Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (
Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population‐specific and pairwise
- PAR ID:
- 10266244
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 25
- Issue:
- 3
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 689-705
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remainingV arecia variegata range. We used 10 polymorphic microsatellite loci and ~550 bp of mtV . variegataDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of theM angoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high averageF ST(0.247) and ΦST (0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward. -
Abstract Despite its economic importance as a bioenergy crop and key role in riparian ecosystems, little is known about genetic diversity and adaptation of the eastern cottonwood (
Populus deltoides ). Here, we report the first population genomics study for this species, conducted on a sample of 425 unrelated individuals collected in 13 states of the southeastern United States. The trees were genotyped by targeted resequencing of 18,153 genes and 23,835 intergenic regions, followed by the identification of single nucleotide polymorphisms (SNP s). This naturalP. deltoides population showed low levels of subpopulation differentiation (F ST = 0.022–0.106), high genetic diversity (θW = 0.00100, π = 0.00170), a large effective population size (N e ≈ 32,900), and low to moderate levels of linkage disequilibrium. Additionally, genomewide scans for selection (Tajima'sD ), subpopulation differentiation ( ), and environmental association analyses with eleven climate variables carried out with two different methods (X T X LFMM andBAYENV 2) identified genes putatively involved in local adaptation. Interestingly, many of these genes were also identified as adaptation candidates in another poplar species,Populus trichocarpa , indicating possible convergent evolution. This study constitutes the first assessment of genetic diversity and local adaptation inP. deltoides throughout the southern part of its range, information we expect to be of use to guide management and breeding strategies for this species in future, especially in the face of climate change. -
Abstract Social structure can have a significant impact on divergence and evolution within species, especially in the marine environment, which has few environmental boundaries to dispersal. On the other hand, genetic structure can affect social structure in many species, through an individual preference towards associating with relatives. One social species, the short‐finned pilot whale (
Globicephala macrorhynchus ), has been shown to live in stable social groups for periods of at least a decade. Using mitochondrial control sequences from 242 individuals and single nucleotide polymorphisms from 106 individuals, we examine population structure among geographic and social groups of short‐finned pilot whales in the Hawaiian Islands, and test for links between social and genetic structure. Our results show that there are at least two geographic populations in the Hawaiian Islands: a Main Hawaiian Islands (MHI ) population and a Northwestern Hawaiian Islands/Pelagic population ( and ΦF STST p <MHI community and a westernMHI community (F STp =p <p <F STp = -
Abstract Human commensal species such as rodent pests are often widely distributed across cities and threaten both infrastructure and public health. Spatially explicit population genomic methods provide insights into movements for cryptic pests that drive evolutionary connectivity across multiple spatial scales. We examined spatial patterns of neutral genomewide variation in brown rats (
Rattus norvegicus ) across Manhattan, New York City (NYC ), using 262 samples and 61,401SNP s to understand (i) relatedness among nearby individuals and the extent of spatial genetic structure in a discrete urban landscape; (ii) the geographic origin ofNYC rats, using a large, previously published data set of global rat genotypes; and (iii) heterogeneity in gene flow across the city, particularly deviations from isolation by distance. We found that rats separated by ≤200 m exhibit strong spatial autocorrelation (r = .3,p = .001) and the effects of localized genetic drift extend to a range of 1,400 m. Across Manhattan, rats exhibited a homogeneous population origin from rats that likely invaded from Great Britain. While traditional approaches identified a single evolutionary cluster with clinal structure across Manhattan, recently developed methods (e.g., fineSTRUCTURE,sPCA ,EEMS ) provided evidence of reduced dispersal across the island's less residential Midtown region resulting in fine‐scale genetic structuring ( = 0.01) and two evolutionary clusters (Uptown and Downtown Manhattan). Thus, while some urban populations of human commensals may appear to be continuously distributed, landscape heterogeneity within cities can drive differences in habitat quality and dispersal, with implications for the spatial distribution of genomic variation, population management and the study of widely distributed pests.F ST -
Abstract Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (
Cornus florida L .) using genotyping by sequencing (GBS ). This species is ecologically important to easternUS forests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases ofGBS , we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM ) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluatedF stper locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScanF stoutliers. ForLFMM , 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.