Learning from multiple representations (MRs) is not an easy task for most people, despite how easy it is for experts. Different combinations of representations (e.g., text + photograph, graph + formula, map + diagram) pose different challenges for learners, but across the literature researchers find these to be challenging learning tasks. Each representation typically includes some unique information, as well as some information shared with the other representation(s). Finding one piece of information is only somewhat challenging, but linking information across representations and especially making inferences are very challenging and important parts of using multiple representations for learning. Coordination of multiple representations skills are rarely taught in classrooms, despite the fact that learners are frequently tested on them. Learning from MRs depends on the specific learning tasks posed, learner characteristics, the specifics of which representation(s) are used, and the design of each representation. These various factors act separately and in combination (which can be compensatory, additive, or interactive). Learning tasks can be differentially effective depending on learner characteristics, especially prior knowledge, self-regulation, and age/grade. Learning tasks should be designed keeping this differential effectiveness in mind, and researchers should test for such interactions.
more »
« less
Usable Information and Evolution of Optimal Representations During Training
We introduce a notion of usable information contained in the representation learned by a deep network, and use it to study how optimal representations for the task emerge during training. We show that the implicit regularization coming from training with Stochastic Gradient Descent with a high learning-rate and small batch size plays an important role in learning minimal sufficient representations for the task. In the process of arriving at a minimal sufficient representation, we find that the content of the representation changes dynamically during training. In particular, we find that semantically meaningful but ultimately irrelevant information is encoded in the early transient dynamics of training, before being later discarded. In addition, we evaluate how perturbing the initial part of training impacts the learning dynamics and the resulting representations. We show these effects on both perceptual decision-making tasks inspired by neuroscience literature, as well as on standard image classification tasks.
more »
« less
- Award ID(s):
- 1943467
- PAR ID:
- 10267227
- Date Published:
- Journal Name:
- International Conference on Learning Representations (ICLR)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Machine learning on graph structured data has attracted much research interest due to its ubiquity in real world data. However, how to efficiently represent graph data in a general way is still an open problem. Traditional methods use handcraft graph features in a tabular form but suffer from the defects of domain expertise requirement and information loss. Graph representation learning overcomes these defects by automatically learning the continuous representations from graph structures, but they require abundant training labels, which are often hard to fulfill for graph-level prediction problems. In this work, we demonstrate that, if available, the domain expertise used for designing handcraft graph features can improve the graph-level representation learning when training labels are scarce. Specifically, we proposed a multi-task knowledge distillation method. By incorporating network-theory-based graph metrics as auxiliary tasks, we show on both synthetic and real datasets that the proposed multi-task learning method can improve the prediction performance of the original learning task, especially when the training data size is small.more » « less
-
We report the presence of a simple neural mechanism that represents an input- output function as a vector within autoregressive transformer language models (LMs). Using causal mediation analysis on a diverse range of in-context-learning (ICL) tasks, we find that a small number attention heads transport a compact representation of the demonstrated task, which we call a function vector (FV). FVs are robust to changes in context, i.e., they trigger execution of the task on inputs such as zero-shot and natural text settings that do not resemble the ICL contexts from which they are collected. We test FVs across a range of tasks, models, and layers and find strong causal effects across settings in middle layers. We investigate the internal structure of FVs and find while that they often contain information that encodes the output space of the function, this information alone is not sufficient to reconstruct an FV. Finally, we test semantic vector composition in FVs, and find that to some extent they can be summed to create vectors that trigger new complex tasks. Our findings show that compact, causal internal vector representations of function abstractions can be explicitly extracted from LLMs.more » « less
-
The premise of identifiable and causal representation learning is to improve the current representation learning paradigm in terms of generalizability or robustness. Despite recent progress in questions of identifiability, more theoretical results demonstrating concrete advantages of these methods for downstream tasks are needed. In this paper, we consider the task of intervention extrapolation: predicting how interventions affect an outcome, even when those interventions are not observed at training time, and show that identifiable representations can provide an effective solution to this task even if the interventions affect the outcome non-linearly. Our setup includes an outcome variable Y , observed features X, which are generated as a non-linear transformation of latent features Z, and exogenous action variables A, which influence Z. The objective of intervention extrapolation is then to predict how interventions on A that lie outside the training support of A affect Y . Here, extrapolation becomes possible if the effect of A on Z is linear and the residual when regressing Z on A has full support. As Z is latent, we combine the task of intervention extrapolation with identifiable representation learning, which we call Rep4Ex: we aim to map the observed features X into a subspace that allows for non-linear extrapolation in A. We show that the hidden representation is identifiable up to an affine transformation in Z-space, which, we prove, is sufficient for intervention extrapolation. The identifiability is characterized by a novel constraint describing the linearity assumption of A on Z. Based on this insight, we propose a flexible method that enforces the linear invariance constraint and can be combined with any type of autoencoder. We validate our theoretical findings through a series of synthetic experiments and show that our approach can indeed succeed in predicting the effects of unseen interventions.more » « less
-
Recent work in interpretability shows that large language models (LLMs) can be adapted for new tasks in a learning-free way: it is possible to intervene on LLM representations to elicit desired behaviors for alignment. For instance, adding certain bias vectors to the outputs of certain attention heads is reported to boost the truthfulness of models. In this work, we show that localized fine-tuning serves as an effective alternative to such representation intervention methods. We introduce a framework called Localized Fine-Tuning on LLM Representations (LoFiT), which identifies a subset of attention heads that are most important for learning a specific task, then trains offset vectors to add to the model's hidden representations at those selected heads. LoFiT localizes to a sparse set of heads (3%-10%) and learns the offset vectors from limited training data, comparable to the settings used for representation intervention. For truthfulness and reasoning tasks, we find that LoFiT's intervention vectors are more effective for LLM adaptation than vectors from representation intervention methods such as Inference-time Intervention. We also find that the localization step is important: selecting a task-specific set of attention heads can lead to higher performance than intervening on heads selected for a different task. Finally, across 7 tasks we study, LoFiT achieves comparable performance to other parameter-efficient fine-tuning methods such as LoRA, despite modifying 20x-200x fewer parameters than these methods.more » « less
An official website of the United States government

