skip to main content


Title: Insight into the bZIP Gene Family in Solanum tuberosum: Genome and Transcriptome Analysis to Understand the Roles of Gene Diversification in Spatiotemporal Gene Expression and Function
The basic region-leucine zipper (bZIP) transcription factors (TFs) form homodimers and heterodimers via the coil–coil region. The bZIP dimerization network influences gene expression across plant development and in response to a range of environmental stresses. The recent release of the most comprehensive potato reference genome was used to identify 80 StbZIP genes and to characterize their gene structure, phylogenetic relationships, and gene expression profiles. The StbZIP genes have undergone 22 segmental and one tandem duplication events. Ka/Ks analysis suggested that most duplications experienced purifying selection. Amino acid sequence alignments and phylogenetic comparisons made with the Arabidopsis bZIP family were used to assign the StbZIP genes to functional groups based on the Arabidopsis orthologs. The patterns of introns and exons were conserved within the assigned functional groups which are supportive of the phylogeny and evidence of a common progenitor. Inspection of the leucine repeat heptads within the bZIP domains identified a pattern of attractive pairs favoring homodimerization, and repulsive pairs favoring heterodimerization. These patterns of attractive and repulsive heptads were similar within each functional group for Arabidopsis and S. tuberosum orthologs. High-throughput RNA-seq data indicated the most highly expressed and repressed genes that might play significant roles in tissue growth and development, abiotic stress response, and response to pathogens including Potato virus X. These data provide useful information for further functional analysis of the StbZIP gene family and their potential applications in crop improvement.  more » « less
Award ID(s):
1759034
NSF-PAR ID:
10267285
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
22
Issue:
1
ISSN:
1422-0067
Page Range / eLocation ID:
253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified threeBiPhomologs in theSolanum tuberosum(potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed thatStBiP1andStBiP2grouped withAtBiP2, whereasStBiP3grouped withAtBiP3. While the protein sequences and folding structures are highly similar, theseStBiPsare distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and ArabidopsisBiP1andBiP2promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereasBiP3promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture ofBiPpromoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.

     
    more » « less
  2. Abstract

    We aim to enable the accurate and efficient transfer of knowledge about gene function gained fromArabidopsis thalianaand other model organisms to other plant species. This knowledge transfer is frequently challenging in plants due to duplications of individual genes and whole genomes in plant lineages. Such duplications result in complex evolutionary relationships between related genes, which may have similar sequences but highly divergent functions. In such cases, functional inference requires more than a simple sequence similarity calculation. We have developed an online resource, PhyloGenes (phylogenes.org), that displays precomputed phylogenetic trees for plant gene families along with experimentally validated function information for individual genes within the families. A total of 40 plant genomes and 10 non‐plant model organisms are represented in over 8,000 gene families. Evolutionary events such as speciation and duplication are clearly labeled on gene trees to distinguish orthologs from paralogs. Nearly 6,000 families have at least one member with an experimentally supported annotation to a Gene Ontology (GO) molecular function or biological process term. By displaying experimentally validated gene functions associated to individual genes within a tree, PhyloGenes enables functional inference for genes of uncharacterized function, based on their evolutionary relationships to experimentally studied genes, in a visually traceable manner. For the many families containing genes that have evolved to perform different functions, PhyloGenes facilitates the use of evolutionary history to determine the most likely function of genes that have not been experimentally characterized. Future work will enrich the resource by incorporating additional gene function datasets such as plant gene expression atlas data.

     
    more » « less
  3. Summary

    Despite well established roles of microRNAs in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed‐specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OEseeds had a lower α‐linolenic acid with a concomitantly higher linoleic acid content than the wild‐type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelinabZIP67andABI3genes. These transcription factors directly or through theABI3‐bZIP12 pathway regulateCsFAD3expression and affect α‐linolenic acid accumulation. In addition, to decipher the miR167A‐CsARF8 mediated transcriptional cascade forCsFAD3suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down‐regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina.

     
    more » « less
  4. Abstract

    Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo-versusheterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers inArabidopsisand show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.

     
    more » « less
  5. Abstract

    The circadian clock is an internal molecular oscillator and coordinates numerous physiological processes through regulation of molecular pathways. Tissue‐specific clocks connected by mobile signals have previously been found to run at different speeds inArabidopsis thalianatissues. However, tissue variation in circadian clocks in crop species is unknown. In this study, leaf and tuber global gene expression in cultivated potato under cycling and constant environmental conditions was profiled. In addition, we used a circadian‐regulated luciferase reporter construct to study tuber gene expression rhythms. Diel and circadian expression patterns were present among 17.9% and 5.6% of the expressed genes in the tuber. Over 500 genes displayed differential tissue specific diel phases. Intriguingly, few core circadian clock genes had circadian expression patterns, while all such genes were circadian rhythmic in cultivated tomato leaves. Furthermore, robust diel and circadian transcriptional rhythms were observed among detached tubers. Our results suggest alternative regulatory mechanisms and/or clock composition is present in potato, as well as the presence of tissue‐specific independent circadian clocks. We have provided the first evidence of a functional circadian clock in below‐ground storage organs, holding important implications for other storage root and tuberous crops.

     
    more » « less