skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Tribute to Michael Goodin
It is with great sadness and sympathy for his family and the plant virology community that we convey the passing of Michael Goodin unexpectedly in December 2020 [...]  more » « less
Award ID(s):
1759034
PAR ID:
10267297
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Viruses
Volume:
13
Issue:
1
ISSN:
1999-4915
Page Range / eLocation ID:
78
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. none (Ed.)
    An obstacle to developing a general mechanical framework for magma mush is the emergence and complexity of a crystal fabric. To illuminate the conditions that produce a crystal fabric we performed time-dependent numerical simulations using a Computational-Fluid-Dynamics and Discrete-Element-Method (CFD-DEM) model in three dimensions. The specific focus was on the role of shear strain in the creation of a preferential orientation of crystals in mush. CFD-DEM method allows for the simultaneous coupling and frictional interactions of melt and crystals undergoing shear strain. The crystal shapes are represented using spheroids (either oblate or prolate). Simulations consist in imposing a compression stress (pressure) and a simple shear to a dense suspension of crystals in a viscous liquid, and monitoring the evolution of the orientation and strength of the shape fabrics. We ran a series of simulations by varying the size and aspect ratio of the particles. We considered samples in which all the solids have the same volume and shape, and cases including size and aspect ratio distributions. Results show that the strength of the shape fabric and the angle between the crystal preferential orientation and the compression plane both increase with the shear strain up to steady state values, which are primarily controlled by the aspect ratio of the particles. The stronger the aspect ratio, the greater the magnitude of the preferential orientation and the lower its angle relative to the compression plane. When introducing a distribution in the size of the crystals, we observed a decrease in the strength of the shape fabric and an increase in the angle between the preferential orientation of the crystals and the compression plane compared with samples composed of crystals having the same shape and size. Similarly, the distribution in the aspect ratio further decreases the strength of the shape fabric and increases the angle between the preferential orientation of the solids and the compression plane. Finally, we employed an alternative approach to quantify the amount of foliation and lineation and show that the samples always display a stronger foliation than lineation, although the shear strain increases both the foliation and the lineation. 
    more » « less
  2. null (Ed.)
    The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87- day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep- sea environments. The multi- faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short- term and long- term fate and transport of oil in marine settings. In this Review , we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep- sea drilling locations and newly- opened high- latitude shipping lanes. 
    more » « less
  3. null (Ed.)
    The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87-day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep-sea environments. The multi-faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short-term and long-term fate and transport of oil in marine settings. In this Review, we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep-sea drilling locations and newly-opened high-latitude shipping lanes. 
    more » « less
  4. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: 1. Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; 2. Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and 3. Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  5. The correlation between helicity and turbulent transport in turbulent flows is probed with the use of direct numerical simulation and Lagrangian scalar tracking. Channel flow and plane Couette flow at friction Reynolds number 300 and Lagrangian data along the trajectories of fluid particles and passive particles with Schmidt numbers 0.7 and 6 are used. The goal is to identify characteristics of the flow that enhance turbulent transport from the wall, and how flow regions that exhibit these characteristics are related to helicity. The relationship between vorticity and relative helicity along particle trajectories is probed, and the relationship between the distribution of helicity conditioned on Reynolds stress quadrants is also evaluated. More importantly, the correlation between relative helicity density and the alignment of vorticity with velocity vectors and eigenvectors of the rate of strain tensor is presented. Separate computations for particles that disperse the farthest into the flow field and those that disperse the least are conducted to determine the flow structures that contribute to turbulent dispersion. The joint distribution of helicity and vertical velocity, and helicity and vertical vorticity depends on the location of particle release and the Schmidt number. The trajectories of particles that disperse the least are characterized by a correlation between the absolute value of the relative helicity density and the absolute value of the cosine between the vorticity vector and the eigenvectors of the rate of strain tensor, while the value of this correlation approaches zero for the particles that disperse the most. 
    more » « less