The study of influence maximization in social networks has largely ignored disparate effects these algorithms might have on the individuals contained in the social network. Individuals may place a high value on receiving information, e.g. job openings or advertisements for loans. While well-connected individuals at the center of the network are likely to receive the information that is being distributed through the network, poorly connected individuals are systematically less likely to receive the information, producing a gap in access to the information between individuals. In this work, we study how best to spread information in a social network while minimizing this access gap.
We propose to use the maximin social welfare function as an objective function, where we maximize the minimum probability of receiving the information under an intervention. We prove that in this setting this welfare function constrains the access gap whereas maximizing the expected number of nodes reached does not. We also investigate the difficulties of using the maximin, and present hardness results and analysis for standard greedy strategies. Finally, we investigate practical ways of optimizing for the maximin, and give empirical evidence that a simple greedy-based strategy works well in practice.
more »
« less
Pipeline Interventions
We introduce the \emph{pipeline intervention} problem, defined by a layered directed acyclic graph and a set of stochastic matrices governing transitions between successive layers. The graph is a stylized model for how people from different populations are presented opportunities, eventually leading to some reward. In our model, individuals are born into an initial position (i.e. some node in the first layer of the graph) according to a fixed probability distribution, and then stochastically progress through the graph according to the transition matrices, until they reach a node in the final layer of the graph; each node in the final layer has a \emph{reward} associated with it. The pipeline intervention problem asks how to best make costly changes to the transition matrices governing people's stochastic transitions through the graph, subject to a budget constraint. We consider two objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to maximize the value to the population (starting node) with the \emph{least} expected value. We consider two variants of the maximin objective that turn out to be distinct, depending on whether we demand a deterministic solution or allow randomization. For each objective, we give an efficient approximation algorithm (an additive FPTAS) for constant width networks. We also tightly characterize the "price of fairness" in our setting: the ratio between the highest achievable social welfare and the highest social welfare consistent with a maximin optimal solution. Finally we show that for polynomial width networks, even approximating the maximin objective to any constant factor is NP hard, even for networks with constant depth. This shows that the restriction on the width in our positive results is essential.
more »
« less
- Award ID(s):
- 1763307
- NSF-PAR ID:
- 10267300
- Date Published:
- Journal Name:
- 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)As the representations output by Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes important to ensure that these representations are fair and stable. In this work, we establish a key connection between counterfactual fairness and stability and leverage it to propose a novel framework, NIFTY (uNIfying Fairness and stabiliTY), which can be used with any GNN to learn fair and stable representations. We introduce a novel objective function that simultaneously accounts for fairness and stability and develop a layer-wise weight normalization using the Lipschitz constant to enhance neural message passing in GNNs. In doing so, we enforce fairness and stability both in the objective function as well as in the GNN architecture. Further, we show theoretically that our layer-wise weight normalization promotes counterfactual fairness and stability in the resulting representations. We introduce three new graph datasets comprising of high-stakes decisions in criminal justice and financial lending domains. Extensive experimentation with the above datasets demonstrates the efficacy of our framework.more » « less
-
Fueled by algorithmic advances, AI algorithms are increasingly being deployed in settings subject to unanticipated challenges with complex social effects. Motivated by real-world deployment of AI driven, social-network based suicide prevention and landslide risk management interventions, this paper focuses on a robust graph covering problem subject to group fairness constraints. We show that, in the absence of fairness constraints, state-of-the-art algorithms for the robust graph covering problem result in biased node coverage: they tend to discriminate individuals (nodes) based on membership in traditionally marginalized groups. To remediate this issue, we propose a novel formulation of the robust covering problem with fairness constraints and a tractable approximation scheme applicable to real world instances. We provide a formal analysis of the price of group fairness (PoF) for this problem, where we show that uncertainty can lead to greater PoF. We demonstrate the effectiveness of our approach on several real-world social networks. Our method yields competitive node coverage while significantly improving group fairness relative to state-of-the-art methods.more » « less
-
In social network, a person located at the periphery region (marginal node) is likely to be treated unfairly when compared with the persons at the center. While existing fairness works on graphs mainly focus on protecting sensitive attributes (e.g., age and gender), the fairness incurred by the graph structure should also be given attention. On the other hand, the information aggregation mechanism of graph neural networks amplifies such structure unfairness, as marginal nodes are often far away from other nodes. In this paper, we focus on novel fairness incurred by the graph structure on graph neural networks, named structure fairness. Specifically, we first analyzed multiple graphs and observed that marginal nodes in graphs have a worse performance of downstream tasks than others in graph neural networks. Motivated by the observation, we propose Structural Fair Graph Neural Network (SFairGNN), which combines neighborhood expansion based structure debiasing with hop-aware attentive information aggregation to achieve structure fairness. Our experiments show SFairGNN can significantly improve structure fairness while maintaining overall performance in the downstream tasks.more » « less
-
This paper presents a new approach to the automated design of mechanisms that incentivize self-interested agents to maximize a global objective (such as revenue or social welfare) in equilibrium. Prior work on automated design has either been restricted to relatively simple mechanisms, or represented mechanisms as neural networks that are hard to interpret and cannot easily incorporate prior knowledge. In this paper, we propose program synthesis as a way around these issues. Concretely, we formalize the problem of designing mechanisms in the form of multiagent environments whose transition and reward functions are programs in a domainspecific language (DSL), in order to maximize an outcome such as revenue or social welfare under given assumptions on how agents act in these environments. We present an initial algorithm, based on a combination of stochastic search over programs and Bayesian optimization, for this problem. We empirically evaluate the algorithm in two domains with different characteristics. Our experiments suggest that the approach can synthesize programmatic mechanisms that are human-interpretable and also perform well.more » « less