skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enzymatic Delivery of Magnetic Nanoparticles into Mitochondria of Live Cells
Abstract Delivering magnetic nanoparticles (MNPs) into mitochondria provides a facile approach to manipulate cell life because mitochondria play essential roles in cell survival and death. Here we report the use of enzyme‐responsive peptide assemblies to deliver MNPs into mitochondria of live cells. The mitochondria‐targeting peptide (Mito‐Flag), as the substrate of enterokinase (ENTK), assembles with MNPs in solution. The MNPs that are encapsulated by Mito‐Flag peptides selectively accumulate to the mitochondria of cancer cells, rather than normal cells. The mitochondrial localization of MNPs reduces the viability of the cancer cells, but hardly affects the survival of the normal cell. This work demonstrates a new and facile strategy to specifically transport MNPs to the mitochondria in cancer cells for exploring the applications of MNPs as the targeted drug for biomedicine and cancer therapy.  more » « less
Award ID(s):
2011846
PAR ID:
10267331
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
7
Issue:
10
ISSN:
2199-692X
Format(s):
Medium: X Size: p. 1104-1107
Size(s):
p. 1104-1107
Sponsoring Org:
National Science Foundation
More Like this
  1. Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells. 
    more » « less
  2. Abstract A majority of breast cancer deaths occur due to metastasis of cancer cells to distant organs. In particular, brain metastasis is very aggressive with an extremely low survival rate. Breast cancer cells that metastasize to the brain can enter a state of dormancy, which allows them to evade death. The brain microenvironment provides biophysical, biochemical, and cellular cues, and plays an important role in determining the fate of dormant cancer cells. However, how these cues influence dormancy remains poorly understood. Herein, we employed hyaluronic acid (HA) hydrogels with a stiffness of ~0.4 kPa as an in vitro biomimetic platform to investigate the impact of biochemical cues, specifically alterations in RGD concentration, on dormancy versus proliferation in MDA‐MB‐231Br brain metastatic breast cancer cells. We applied varying concentrations of RGD peptide (0, 1, 2, or 4 mg/mL) to HA hydrogel surfaces and confirmed varying degrees of surface functionalization using a fluorescently labeled RGD peptide. Post functionalization, ~10,000 MDA‐MB‐231Br cells were seeded on top of the hydrogels and cultured for 5 days. We found that an increase in RGD concentration led to changes in cell morphology, with cells transitioning from a rounded to spindle‐like morphology as well as an increase in cell spreading area. Also, an increase in RGD concentration resulted in an increase in cell proliferation. Cellular dormancy was assessed using the ratio of phosphorylated extracellular signal‐regulated kinase 1/2 (p‐ERK) to phosphorylated p38 (p‐p38) positivity, which was significantly lower in hydrogels without RGD and in hydrogels with lowest RGD concentration compared to hydrogels functionalized with higher RGD concentration. We also demonstrated that the HA hydrogel‐induced cellular dormancy was reversible. Finally, we demonstrated the involvement of β1 integrin in mediating cell phenotype in our hydrogel platform. Overall, our results provide insight into the role of biochemical cues in regulating dormancy versus proliferation in brain metastatic breast cancer cells. 
    more » « less
  3. From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration–approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle–targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation. 
    more » « less
  4. Abstract: Mitochondria are important intracellular organelles because of their key roles in cellular metabolism,proliferation, and programmed cell death. The differences in the structure and function of themitochondria of healthy and cancerous cells have made mitochondria an interesting target for drug delivery.Mitochondrial targeting is an emerging field as the targeted delivery of cytotoxic payloads andantioxidants to the mitochondrial DNA is capable of overcoming multidrug resistance. Mitochondrialtargeting is preferred over nuclear targeting because it can take advantage of the distorted metabolismin cancer. The negative membrane potential of the inner and outer mitochondrial membranes, as well astheir lipophilicity, are known to be the features that drive the entry of compatible targeting moiety,along with anticancer drug conjugates, towards mitochondria. The design of such drug nanocarrier conjugatesis challenging because they need not only to target the specific tumor/cancer site but have toovercome multiple barriers as well, such as the cell membrane and mitochondrial membrane. This reviewfocuses on the use of peptide-based nanocarriers (organic nanostructures such as liposomes, inorganic,carbon-based, and polymers) for mitochondrial targeting of the tumor/cancer. Both invitro and in vivo key results are reported. 
    more » « less
  5. Abstract In addition to critical roles in bioenergetics, mitochondria are key contributors to the regulation of many other functions in cells, ranging from steroidogenesis to apoptosis. Numerous studies further demonstrate that cell type‐specific differences exist in mitochondria, with cells of a given lineage tailoring their endogenous mitochondrial population to suit specific functional needs. These findings, coupled with studies of the therapeutic potential of mitochondrial transplantation, provide a strong impetus to better understand how mitochondria can influence cell function or fate. Here an inducible mitochondrial depletion modelis used to study how cells lacking endogenous mitochondria respond, on a global protein expression level, to transplantation with lineage‐mismatched (LM) mitochondria. It is shown that LM mitochondrial transplantation does not alter the proteomic profile in nonmitochondria–depleted recipient cells; however, enforced depletion of endogenous mitochondria results in dramatic changes in the proteomic landscape, which returns to the predepletion state following internalization of LM mitochondria. These data, derived from a cell system that can be rendered free of influence by endogenous mitochondria, indicate that transplantation of mitochondria—even from a source that differs significantly from the recipient cell population, effectively restores a normal proteomic landscape to cells lacking their own mitochondria. 
    more » « less