The title compound, C 10 H 13 NO 2 S, was synthesized by a nucleophilic substitution reaction between allyl amine and p -toluenesulfonyl chloride. The sulfonate S—O bond lengths are 1.4282 (17) and 1.4353 (17) Å, and the C—N—S—C torsion angle involving the sulfonamide moiety is −61.0 (2)°. In the crystal, centrosymmetric dimers of the title compound are present via intermolecular N—H...O hydrogen bonds between sulfonamide groups. These dimers are linked into ribbons along the c -axis direction through offset π–π interactions.
more »
« less
Hydronium ion diffusion in model proton exchange membranes at low hydration: insights from ab initio molecular dynamics
Fuel-cell deployable proton exchange membranes (PEMs) are considered to be a promising technology for clean and efficient power generation. However, a fundamental atomistic understanding of the hydronium diffusion process in the PEM environment is an ongoing challenge. In this work, we employ fully atomistic ab initio molecular dynamics to simulate diffusion mechanisms of the hydronium ion in a model PEM. In order to mimic a precise polymer with a layered morphology, as recently introduced by Trigg, et al. , Nat. Mater. , 2018, 17 , 725, a nano-confined environment was created composed of graphane bilayers to which sulfonate end groups (SO 3 − ) are attached, and the space between the bilayers was subsequently filled with water and hydronium ions up to λ values of 3 and 4, where λ denotes the water-to-anion ratio. We find that for the low λ value, the water distribution is not homogeneous, which results in an incomplete second solvation shell for H 3 O + , fewer water molecules in the vicinity of SO 3 − , and a higher probability of obtaining a coordination number of ∼1 for the nearest oxygen neighbor to SO 3 − . These conditions increase the probability that H 3 O + will react with SO 3 − according to the reaction SO 3 − + H 3 O + ↔ SO 3 H + H 2 O, which was found to be an essential part of the hydronium diffusion mechanism. This suggests there are optimal hydration conditions that allow the sulfonate end groups to take an active part in the hydronium diffusion mechanism, resulting in high hydronium conductivity. We expect that the results of this study could help guide synthesis and experimental characterization used to design new PEM materials with high hydronium conductivity.
more »
« less
- Award ID(s):
- 1904767
- PAR ID:
- 10267608
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 2448 to 2458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A free-standing film composed of bilayered vanadium oxide nanoflakes is for the first time synthesized using a new low-energy process. The precursor powder, δ-Li x V 2 O 5 · n H 2 O, was prepared using a simple sol–gel based chemical preintercalation synthesis procedure. δ-Li x V 2 O 5 · n H 2 O was dispersed and probe sonicated in N -methyl pyrrolidone to exfoliate the bilayers followed by vacuum filtration resulting in the formation of a free-standing film with obsidian color. X-ray diffraction showed lamellar ordering of a single-phase material with a decreased interlayer distance compared to that of the precursor powder. Scanning electron microscopy images demonstrated stacking of the individual nanoflakes. This morphology was further confirmed with scanning transmission electron microscopy that showed highly malleable nanoflakes consisting of ∼10–100 vanadium oxide bilayers. One of the most important consequences of this morphological rearrangement is that the electronic conductivity of the free-standing film, measured by the four-probe method, increased by an order of magnitude compared to conductivity of the pressed pellet made of precursor powder. X-ray photoelectron spectroscopy measurements showed the coexistence of both V 5+ and V 4+ oxidation states in the exfoliated sample, possibly contributing to the change in electronic conductivity. The developed approach provides the ability to maintain the phase purity and crystallographic order during the exfoliation process, coupled with the formation of a free-standing film of enhanced conductivity. The produced bilayered vanadium oxide nanoflakes can be used as the building blocks for the synthesis of versatile two-dimensional heterostructures to create innovative electrodes for electrochemical energy storage applications.more » « less
-
Predicting the asymmetric structure and dynamics of solvated hydroxide and hydronium in water from ab initio molecular dynamics (AIMD) has been a challenging task. The difficulty mainly comes from a lack of accurate and efficient exchange–correlation functional in elucidating the amphiphilic nature and the ubiquitous proton transfer behaviors of the two ions. By adopting the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation functional in AIMD simulations, we systematically examine the amphiphilic properties, the solvation structures, the electronic structures, and the dynamic properties of the two water ions. In particular, we compare these results to those predicted by the PBE0-TS functional, which is an accurate yet computationally more expensive exchange–correlation functional. We demonstrate that the general-purpose SCAN functional provides a reliable choice for describing the two water ions. Specifically, in the SCAN picture of water ions, the appearance of the fourth and fifth hydrogen bonds near hydroxide stabilizes the pot-like shape solvation structure and suppresses the structural diffusion, while the hydronium stably donates three hydrogen bonds to its neighbors. We apply a detailed analysis of the proton transfer mechanism of the two ions and find the two ions exhibit substantially different proton transfer patterns. Our AIMD simulations indicate that hydroxide diffuses more slowly than hydronium in water, which is consistent with the experimental results.more » « less
-
Abstract Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications.more » « less
-
SUMMARY Plant cuticles are a mixture of crystalline and amorphous waxes that restrict the exchange of molecules between the plant and the atmosphere. The multicomponent nature of cuticular waxes complicates the study of the relationship between the physical and transport properties. Here, a model cuticle based on the epicuticular waxes ofPetunia hybridaflower petals was formulated to test the effect of wax composition on diffusion of water and volatile organic compounds (VOCs). The model cuticle was composed of ann‐tetracosane (C24H50), 1‐docosanol (C22H45OH), and 3‐methylbutyl dodecanoate (C17H34O2), reflecting the relative chain length, functional groups, molecular arrangements, and crystallinity of the natural waxes. Molecular dynamics simulations were performed to obtain diffusion coefficients for compounds moving through waxes of varying composition. Simulated VOC diffusivities of the model system were found to highly correlate within vitromeasurements in isolated petunia cuticles. VOC diffusivity increased up to 30‐fold in completely amorphous waxes, indicating a significant effect of crystallinity on cuticular permeability. The crystallinity of the waxes was highly dependent on the elongation of the lattice length and decrease in gap width between crystalline unit cells. Diffusion of water and higher molecular weight VOCs were significantly affected by alterations in crystalline spacing and lengths, whereas the low molecular weight VOCs were less affected. Comparison of measured diffusion coefficients from atomistic simulations and emissions from petunia flowers indicates that the role of the plant cuticle in the VOC emission network is attributed to the differential control on mass transfer of individual VOCs by controlling the composition, amount, and dynamics of scent emission.more » « less
An official website of the United States government

