skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite-Sample Bounds on the Accuracy of Plug-In Estimators of Fisher Information
Finite-sample bounds on the accuracy of Bhattacharya’s plug-in estimator for Fisher information are derived. These bounds are further improved by introducing a clipping step that allows for better control over the score function. This leads to superior upper bounds on the rates of convergence, albeit under slightly different regularity conditions. The performance bounds on both estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown’s identity, two corresponding estimators of the minimum mean-square error are proposed.  more » « less
Award ID(s):
1908308
PAR ID:
10268379
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
5
ISSN:
1099-4300
Page Range / eLocation ID:
545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under (epsilon, delta)-differential privacy. We provide sample optimal algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most k. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on di erentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By carefully constructing chosen priors over the hypothesis classes, and using Le Cam’s two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy. 
    more » « less
  2. This paper presents finite‐sample efficiency bounds for the core econometric problem of estimation of linear regression coefficients. We show that the classical Gauss–Markov theorem can be restated omitting the unnatural restriction to linear estimators, without adding any extra conditions. Our results are lower bounds on the variances of unbiased estimators. These lower bounds correspond to the variances of the the least squares estimator and the generalized least squares estimator, depending on the assumption on the error covariances. These results show that we can drop the label “linear estimator” from the pedagogy of the Gauss–Markov theorem. Instead of referring to these estimators as BLUE, they can legitimately be called BUE (best unbiased estimators). 
    more » « less
  3. Cardinality Estimation is to estimate the size of the output of a query without computing it, by using only statistics on the input relations. Existing estimators try to return an unbiased estimate of the cardinality: this is notoriously difficult. A new class of estimators have been proposed recently, called pessimistic estimators, which compute a guaranteed upper bound on the query output. Two recent advances have made pessimistic estimators practical. The first is the recent observation that degree sequences of the input relations can be used to compute query upper bounds. The second is a long line of theoretical results that have developed the use of information theoretic inequalities for query upper bounds. This paper is a short overview of pessimistic cardinality estimators, contrasting them with traditional estimators. 
    more » « less
  4. Statistical divergences (SDs), which quantify the dissimilarity between probability distributions, are a basic constituent of statistical inference and machine learning. A modern method for estimating those divergences relies on parametrizing an empirical variational form by a neural network (NN) and optimizing over parameter space. Such neural estimators are abundantly used in practice, but corresponding performance guarantees are partial and call for further exploration. We establish non-asymptotic absolute error bounds for a neural estimator realized by a shallow NN, focusing on four popular 𝖿-divergences---Kullback-Leibler, chi-squared, squared Hellinger, and total variation. Our analysis relies on non-asymptotic function approximation theorems and tools from empirical process theory to bound the two sources of error involved: function approximation and empirical estimation. The bounds characterize the effective error in terms of NN size and the number of samples, and reveal scaling rates that ensure consistency. For compactly supported distributions, we further show that neural estimators of the first three divergences above with appropriate NN growth-rate are minimax rate-optimal, achieving the parametric convergence rate. 
    more » « less
  5. Recent work has reemphasized the importance of cardinality estimates for query optimization. While new techniques have continuously improved in accuracy over time, they still generally allow for under-estimates which often lead optimizers to make overly optimistic decisions. This can be very costly for expensive queries. An alternative approach to estimation is cardinality bounding, also called pessimistic cardinality estimation, where the cardinality estimator provides guaranteed upper bounds of the true cardinality. By never underestimating, this approach allows the optimizer to avoid potentially inefficient plans. However, existing pessimistic cardinality estimators are not yet practical: they use very limited statistics on the data, and cannot handle predicates. In this paper, we introduce SafeBound, the first practical system for generating cardinality bounds. SafeBound builds on a recent theoretical work that uses degree sequences on join attributes to compute cardinality bounds, extends this framework with predicates, introduces a practical compression method for the degree sequences, and implements an efficient inference algorithm. Across four workloads, SafeBound achieves up to 80% lower end-to-end runtimes than PostgreSQL, and is on par or better than state of the art ML-based estimators and pessimistic cardinality estimators, by improving the runtime of the expensive queries. It also saves up to 500x in query planning time, and uses up to 6.8x less space compared to state of the art cardinality estimation methods. 
    more » « less