- PAR ID:
- 10269838
- Date Published:
- Journal Name:
- Journal of fluid mechanics
- Volume:
- 908
- ISSN:
- 1469-7645
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Droplet breakup is a complex process involving interfacial instability and transport across a wide range of length and time scales. Fundamental studies of shock-droplet interaction provide valuable insight into the physical processes behind droplet breakup at high Weber and Reynolds numbers. Many high-speed applications such as liquid-fueled detonations and hypersonic hydrometeor impacts involve small droplets under high Weber numbers and/or unsteady conditions. The work presented here will explore deformation and hydrodynamics leading to breakup for small droplets (< 200μm) at high Weber numbers. An experimental campaign is presented whereby droplet deformation is measured at high temporal and spatial resolution. Small rapidly evaporating droplets (≈ 150μm) at Weber numbers in excess of 1000 are studied. High-speed (sub-microsecond image times) shadowgraphy provides measurement of the droplet deformation rate, acceleration, and breakup timing. DNS results are presented to further explore deformation rates for smaller droplets (≈ 5μm). Deformation rates are compared with existing models for both experimental and simulation cases. This ongoing work will provide additional data from which our understanding of complex droplet phenomena may be advanced and applied to physical systems.more » « less
-
To achieve high power density and thermodynamic cycle efficiency, the working pressures of liquid-propellant rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) are continuously increasing, which could reach or go beyond the thermodynamic critical pressure of the liquid propellant. For this reason, the studies of trans- and super-critical injection are getting more and more attention. However, the simulation of transcritical phase change is still a challenging topic. The phase boundary, especially near the mixture critical point, needs to be accurately determined to investigate the multicomponent effects on transcritical injection and atomization. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the mixture critical point. An \textit{in situ} adaptive tabulation (ISAT) method was developed to accelerate the computationally expensive multicomponent VLE computation such that it can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to develop a VLE-based CFD solver. In this work, shock-droplet interaction and two-phase mixing simulations are conducted using our new VLE-based CFD solver. The shock-droplet interaction simulation results capture the thermodynamic condition of the surface entering the supercritical state after shock passes through. The atomization of droplets could be triggered by vorticity formed at the droplets' surface. 2D temporal mixing layer simulations show the evolution of the transcritical mixing layer and capture the phase split effect at the mixing layer.more » « less
-
In the pursuit of enhanced engine performance and reduced emissions, the design of liquid-fueled propulsion systems is shifting towards much higher combustor pressures, surpassing the nominal critical pressure of the fuel and air. This trend leads to the adoption of supercritical conditions, wherein the liquid fuel is injected into the ambient air at supercritical pressure and temperature, causing the fuel temperature to exceed its nominal critical point. This transition from a liquid-like to a gas-like behavior, known as "transcritical behavior," is a crucial aspect governing the operation of modern high-pressure propulsion and energy conversion systems. In these systems, the primary liquid jet breakup and the subsequent break-up of the resulting droplets into smaller droplets, namely secondary breakup, significantly impact mixing and combustion processes. Despite its importance, there has been a limited focus on droplet breakup at supercritical conditions, particularly at higher flow speeds relevant to high-speed liquid-fuel propulsion systems. Surface tension effects are often neglected in the simulation of transcritical flow, assuming surface tension vanishes beyond the critical point, while recent experiments and molecular dynamics simulations suggest that surface tension effects persist at transcritical conditions. To gain insight into the effects of surface tension on transcritical flows, we have developed a fully compressible multiphaseDirect Numerical Simulation (DNS) approach that accounts for decaying surface effects. The diffuse interface method is employed to represent transcritical interfaces, accounting for surface tension effects calculated using molecular dynamics simulations. This approach is employed to investigate the behavior of subcritical n-dodecane droplets in a supercritical nitrogen environment interacting with a shockwave, aiming to identify the governing breakup regimes at transcritical conditions. The development of quantitative measures enables the generalization of droplet breakup modes for transcritical droplets. The insights gained from this study contribute to advancing the understanding of transcritical liquid breakup, providing valuable knowledge for designing and optimizing high-speed propulsion systemsmore » « less
-
Abstract High-fidelity simulations of coughs and sneezes that serve as virtual experiments are presented, and they offer an unprecedented opportunity to peer into the chaotic evolution of the resulting airborne droplet clouds. While larger droplets quickly fall-out of the cloud, smaller droplets evaporate rapidly. The non-volatiles remain airborne as droplet nuclei for a long time to be transported over long distances. The substantial variation observed between the different realizations has important social distancing implications, since probabilistic outlier-events do occur and may need to be taken into account when assessing the risk of contagion. Contrary to common expectations, we observe dry ambient conditions to increase by more than four times the number of airborne potentially virus-laden nuclei, as a result of reduced droplet fall-out through rapid evaporation. The simulation results are used to validate and calibrate a comprehensive multiphase theory, which is then used to predict the spread of airborne nuclei under a wide variety of ambient conditions.
-
The dispersion of an immiscible fluid in a turbulent liquid flow is a frequent occurrence in various natural and technical processes, with particular importance in the chemical, pharmaceutical, mining, petroleum, and food industries. Understanding the dynamics and breakup of liquid droplets is crucial in many scientific and engineering applications, as poor control and optimization of droplet systems results in significant financial losses annually. Although a theoretical background for describing droplet breakup exists, many assumptions still require experimental verification. Numerous mathematical models have been proposed to describe the rate coefficient of droplet breakup and child distribution functions. However, the validation and discrimination between models have been hindered by the lack of experimental data gathered under well-controlled and well characterized conditions. Thus, to validate the current models, novel equipment and methodology for optical droplet breakage research are required. In this work, a von K´arm´an swirling flow apparatus was designed and constructed to carry out optical based droplet breakage experiments under low-intensity, homogeneous turbulent flow. The methodology presented here describes the procedure for generating and controlling the size of the droplets being injected into the homogeneous turbulent flow field. The experiments involved introducing single droplets into the test section, using peanut oil to be the droplet phase and the continuous phase is water. Automated image analysis algorithms were utilized to determine breakage time, breakage probability, and child droplet size distribution for different turbulence intensities.more » « less