skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characteristics of small anthropogenic landforms resulting from historical charcoal production in western Connecticut, USA
Relict charcoal hearths (RCHs) are anthropogenic geomorphic features with an average diameter of 12 m found in many forests of Central Europe and in the eastern USA wherever pre-coal iron production took place or other industries demanded the production of charcoal. To expand the knowledge about their geoarchaeological significance and their legacy effect on soil properties and forest ecosystems, we propose a method for a generalized description of soil stratigraphy on RCHs. We studied 154 soil profiles at 52 RCH sites alongside two 1 km transects in Litchfield County, Connecticut, USA. The sites can be classified based on the slope inclination, with sites on <4° mostly having a single-layered stratigraphy and an elevated circular shape, while sites on slopes >4° mostly are built as levelled and multilayered platforms. The latter have two or more charcoal rich technogenic Auh-layers separated by intermediate Auh-layers mostly consisting of mineral substrate. Based on average layer thicknesses and their dependence on the sites slope inclinations, we propose a model with two idealized RCH shapes with slope controlled properties that allow for an easy computation of site diameters and elemental stocks. With ongoing advances in remote sensing of RCH sites, our proposed model can help to further understand the effects of historic land use on a landscape scale.  more » « less
Award ID(s):
1654462
PAR ID:
10270642
Author(s) / Creator(s):
Date Published:
Journal Name:
Catena
Volume:
195
ISSN:
0341-8162
Page Range / eLocation ID:
104896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Relic charcoal hearths (RCHs) have produced distinct legacy effects in forest soils around the world. Recently, LiDAR imagery has revealed thousands of 18th–early 20th century RCHs in Litchfield County, Connecticut, USA; however, the effects of RCHs on a landscape-scale are not well-documented, particularly fine-scale heterogeneity within RCHs and surrounding soils. This study examines the long-term impacts of charcoal production by measuring RCH soil chemical and physical properties from three perspectives: (1) compared to adjacent reference sites (RSadj), (2) laterally at systematic distances away from the RCH center, and (3) vertically within the RCH soil profile. Mean charcoal abundance was greater in RCH sites than RSadj (p < 0.01). Soil organic carbon (SOC), total C, and extractable Ca2+, Mg2+, Na+ were greater in RCH sites as compared to RSadj (p < 0.01), and available phosphorus (p < 0.01), K+, and trace elements (Mo, Ag, Hg, and Se) were lower (p < 0.05). In vertical profiles, many RCHs had 2 charcoal-rich layers within the anthropic epipedon, demonstrating multiple episodes of charcoal production. Peaks in SOC, C:N, Ca2+, Mg2+ corresponded with charcoal-rich layers. Systematic transect sampling across the RCH boundary identified charcoal fragments in soils at distances up to 25 m beyond the RCH boundary, increasing the surface-level (0–15 cm) area of impact for an individual RCH by more than 30×, from a 5-m radius (RCH area = 78.5 m2) to a 30-m radius (total area of impact = 2826 m2). These findings capture fine-scale variations within and among RCH and reference sites and contribute to estimating the total area of forest soils impacted by historical charcoal production. 
    more » « less
  2. In the past decade, numerous studies have successfully mapped thousands of former charcoal production sites (also called relict charcoal hearths) manually using digital elevation model (DEM) data from various forested areas in Europe and the north-eastern USA. The presence of these sites causes significant changes in the soil physical and chemical properties, referred to as legacy effects, due to high amounts of charcoal that remain in the soils. The overwhelming amount of charcoal hearths found in landscapes necessitates the use of automated methods to map and analyse these landforms. We present a novel approach based on open source data and software, to automatically detect relict charcoal hearths in large-scale LiDAR datasets (visualized with Simple Local Relief Model). In addition, the approach simultaneously provides both general as well as domain-specific information, which can be used to further study legacy effects. Different versions of the methodology were fine-tuned on data from north-western Connecticut and subsequently tested on two different areas in Connecticut. The results show that these perform adequate, with F1-scores ranging between 0.21 and 0.76, although additional post-processing was needed to deal with variations in LiDAR quality. After testing, the best performing version of the prediction model (with an average F1-score of 0.56) was applied on the entire state of Connecticut. The results show a clear overlap with the known distribution of charcoal hearths in the state, while new concentrations were found as well. This shows the usability of the approach on large-scale datasets, even when the terrain and LiDAR quality varies. 
    more » « less
  3. null (Ed.)
    One of the benefits of training a process-based, land surface model is the capacity to use it in ungauged sites as a complement to standard weather stations for predicting energy fluxes, evapotranspiration, and surface and root-zone soil temperature and moisture. In this study, dynamic (i.e., time-evolving) vegetation parameters were derived from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and coupled with a physics-based land surface model (tin-based Real-time Integrated Basin Simulator (tRIBS)) at four eddy covariance (EC) sites in south-central U.S. to test the predictability of micro-meteorological, soil-related, and energy flux-related variables. One cropland and one grassland EC site in northern Oklahoma, USA, were used to tune the model with respect to energy fluxes, soil temperature, and moisture. Calibrated model parameters, mostly related to the soil, were then transferred to two other EC sites in Oklahoma with similar soil and vegetation types. New dynamic vegetation parameter time series were updated according to MODIS imagery at each site. Overall, the tRIBS model captured both seasonal and diurnal cycles of the energy partitioning and soil temperatures across all four stations, as indicated by the model assessment metrics, although large uncertainties appeared in the prediction of ground heat flux, surface, and root-zone soil moisture at some stations. The transferability of previously calibrated model parameters and the use of MODIS to derive dynamic vegetation parameters enabled rapid yet reasonable predictions. The model was proven to be a convenient complement to standard weather stations particularly for sites where eddy covariance or similar equipment is not available. 
    more » « less
  4. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    Soil bioengineering using Vetiver is a widely used vegetation-based slope failure mitigation technique. Though Sunshine Vetiver grass, also known as Chrysopogon zizanioides, grows 3 m in length inside the soil in tropical and subtropical climate conditions, the depth up to which Vetiver impacts the soil property has remained undetected. This study has investigated the subsurface influence zone of Vetiver grass based on nondestructive geophysical investigations Electrical Resistivity Imaging (ERI) and Multichannel Analysis of Surface Waves (MASW) in a high plasticity expansive clay soil slope in Mississippi, United States. ERI data collected on the slope revealed that the top 2 m of the high plasticity clay soil had a higher resistivity value with Vetiver (ranging from 4 to 60 􀀺m) compared to the soil without Vetiver (ranging from 2 to 28 􀀺m). MASW investigation results at the same slope have indicated a similar increase in shear wave velocity with Vetiver up to 2 m indicating enhanced soil stiffness while compared to the section without it. The combined geophysical approach using ERI and MASW reveals that the root system of the Vetiver grass enhanced the moisture content and increased the stiffness of soil within the top layers. Though the grass roots can grow more than 3 m inside the soil, the major influence was observed within the top 2 m from the slope surface. 
    more » « less
  5. null (Ed.)
    To determine whether mangrove soil accretion can keep up with increasing rates of sea level rise, we modeled the theoretical, steady-state (i.e., excluding hurricane impacts) limits to vertical soil accretion in riverine mangrove forests on the southwest coast of Florida, USA. We measured dry bulk density (BD) and loss on ignition (LOI) from mangrove soils collected over a period of 12 years along an estuarine transect of the Shark River. The plotted relationship between BD and LOI was fit to an idealized mixing model equation that provided estimates of organic and inorganic packing densities in the soils. We used these estimates in combination with measures of root production and mineral deposition to calculate their combined contribution to steady-state, vertical soil accretion. On average, the modeled rates of accretion (0.9 to 2.4 mm year−1) were lower than other measured rates of soil accretion at these sites and far less than a recent estimate of sea level rise in south Florida (7.7 mm year−1). To date, however, no evidence of mangrove “drowning” has been observed in this region of the Everglades, indicating that assumptions of the linear accretion model are invalid and/or other contributions to soil accretion (e.g., additional sources of organic matter; feedbacks between physical sedimentation processes and biological responses to short-term environmental change) make up the accretion deficit. This exercise highlights the potential positive impacts of hurricanes on non-steady-state soil accretion that contribute to the persistence of neotropical mangroves in regions of high disturbance frequency such as the Gulf of Mexico and the Caribbean region. 
    more » « less