A bstract It is well-known that first-order phase transitions in the early universe can be a powerful source of observable stochastic gravitational wave backgrounds. Any such gravitational wave background must exhibit large-scale anisotropies at least as large as those seen in the CMB 10 − 5 , providing a valuable new window onto the (inflationary) origins of primordial fluctuations. While significantly larger fractional anisotropies are possible (for example, in multi-field inflation) and would be easier to interpret, it has been argued that these can only be consistent with CMB bounds if the gravitational wave signal is correspondingly smaller. In this paper, we show that this argument, which relies on assuming radiation dominance of the very early universe, can be evaded if there is an era of early matter dominance of a certain robust type. This allows large gravitational wave anisotropies to be consistent with observable signals at proposed future gravitational wave detectors. Constraints from the CMB on large scales, as well as primordial black hole and mini-cluster formation on small scales, and secondary scalar-induced gravitational waves are all taken into account.
more »
« less
Non-Gaussian stochastic gravitational waves from phase transitions
A bstract Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.
more »
« less
- Award ID(s):
- 2014165
- PAR ID:
- 10271862
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 11
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The scalar and tensor fluctuations generated during inflation can be correlated, if arising from the same underlying mechanism. In this paper we investigate such correlation in the model of axion inflation, where the rolling inflaton produces quanta of a U(1) gauge field which, in turn, source scalar and tensor fluctuations. We compute the primordial correlator of the curvature perturbation, ζ, with the gravitational energy density, ΩGW, at frequencies probed by gravitational wave detectors. This two-point function receives two contributions: one arising from the correlation of gravitational waves with the scalar perturbations generated by the standard mechanism of amplification of vacuum fluctuations, and the other coming from the correlation of gravitational waves with the scalar perturbations sourced by the gauge field. Our analysis shows that the former effect is generally dominant. For typical values of the parameters, the correlator, normalized by the amplitude of ζ and by the fractional energy in gravitational waves at interferometer frequencies, turns out to be of the order of 10-4÷ 10-2.more » « less
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon-noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.more » « less
-
The scalar and tensor fluctuations produced during inflation can be correlated, if arising from the same underlying mechanism. In this paper we investigate such correlation in the model of axion inflation, where the rolling inflaton produces quanta of a U(1) gauge field which, in turn, source scalar and tensor fluctuations. We compute the primordial correlator of the curvature perturbation, ζ, with the amplitude of the gravitational waves squared, hijhij, at frequencies probed by gravitational wave detectors. This two-point function receives two contributions: one arising from the correlation of gravitational waves with the scalar perturbations generated by the standard mechanism of amplification of vacuum fluctuations, and the other coming from the correlation of gravitational waves with the scalar perturbations sourced by the gauge field. Our analysis shows that the latter effect is generally dominant. The correlator, normalized by the amplitude of ζ and of hijhij, turns out to be of the order of 10−2×(fequilNL)1/3, where fequilNL measures the scalar bispectrum sourced by the gauge modes.more » « less
-
Gravitational waves are ripples in the fabric of spacetime that are caused by events such as the merging of black holes. In principle, many types of events occur that could create gravitational waves with frequencies ranging from as high as a few kilohertz to as low as a few nanohertz. Sources of gravitational waves in the nanohertz frequency range include cosmic strings, quantum fluctuations from the early Universe, and, notably, supermassive black hole binaries (SMBHBs). Some gravitational wave sources are so numerous that they are all expected to contribute to a gravitational wave background (GWB). This GWB has been the target of pulsar timing arrays (PTAs) for decades.more » « less
An official website of the United States government

