skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Enantioselective Synthesis of Eburnamonine, Eucophylline, and 16′‐ epi ‐Leucophyllidine
Abstract A synthetic approach to the heterodimeric bisindole alkaloid leucophyllidine is disclosed herein. An enantioenriched lactam building block, synthesized through palladium‐catalyzed asymmetric allylic alkylation, served as the precursor to both hemispheres. The eburnamonine‐derived fragment was synthesized through a Bischler–Napieralski/hydrogenation approach, while the eucophylline‐derived fragment was synthesized by Friedländer quinoline synthesis and two sequential C−H functionalization steps. A convergent Stille coupling and phenol‐directed hydrogenation united the two monomeric fragments to afford 16′‐epi‐leucophyllidine in 21 steps from commercial material.  more » « less
Award ID(s):
1700982
PAR ID:
10271956
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
33
ISSN:
1433-7851
Page Range / eLocation ID:
p. 17957-17962
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Concise total syntheses of several 5/7/6 norcembranoids, including ineleganolide, scabrolide B, sinuscalide C, and fragilolide A have been achieved through a fragment coupling/ring closure approach. The central seven-membered ring was forged through sequential Mukaiyama–Michael/aldol reactions using norcarvone and a decorated bicyclic lactone incorporating a latent electrophile. Subsequent manipulations installed the reactive enedione motif and delivered scabrolide B in 11 steps from a chiral pool-derived enone. Finally, ineleganolide, sinuscalide C, and fragilolide A were each accessed in one additional step. 
    more » « less
  2. Abstract An asymmetric approach toward the synthesis of the marine natural product aspergillide‐C has been developed. The convergent asymmetric synthesis uses two asymmetric Noyori transfer hydrogenations to enantioselectively prepare the two key fragments, aC‐1 toC‐7 pyranone fragment and aC‐8 toC‐14β‐keto‐sulfone fragment. The absolute stereochemistry of the pyranone fragment was established by a Noyori reduction ofβ‐furylketoester to form a furyl alcohol. An Achmatowicz rearrangement was used to stereoselectively convert the furyl alcohol in to the key pyranone fragment. The absolute stereochemistry of theβ‐keto‐sulfone fragment was established by a Noyori reduction of an ynone to form a propargyl alcohol. An alkyne zipper isomerization was used to stereospecifically convert the propargyl alcohol in to theβ‐keto‐sulfone fragment. Finally, a Pd‐catalyzedC‐glycosylation was used to diastereoselectively couple the two fragments, which when combined with a reduction and Julia‐Kocienski type elimination formed a protected variant of the 4‐epi‐seco‐acid of aspergillide‐C. 
    more » « less
  3. Carbon dioxide hydrogenation with base to generate formate salts can provide a means of storing hydrogen in an energy dense solid. However, this application requires catalytic CO2 hydrogenation, which would ideally use an earth abundant metal catalyst. In this article, six new (CNC)CoIL2 pincer complexes were synthesized and fully characterized, including single crystal X-Ray diffraction analysis on four new complexes. These complexes contain an imidazole-based (1R) N-heterocyclic carbene (NHC) ring or a benzimidazole based NHC ring (2R) in the CNC pincer. The R group is para to N on the pyridine ring and been varied from electron withdrawing (CF3) to donating (Me, OMe) substituents. The L type ligands have included CO and phosphine ligands (in PPh32 and PMe32). Thus, two known Co complexes (1, 1OMe) and six new complexes (1Me, 1CF3, 2, 2OMe, PPh32, PMe32) were studied for the CO2 hydrogenation reaction. In general, the unsubstituted CNC pincer complexes bearing two carbonyl ligands led to the highest activity. The best catalyst, 2, remains active for over 16 h and produces a turnover number of 39,800 with 20 bars of 1:1 CO2 / H2 mixture at 60 °C. A computational study of the mechanism of CO2 hydrogenation is also reported. 
    more » « less
  4. Catalytic hydrogenation of aromatic compounds is an important industrial process, particularly for the production of many petrochemical and pharmaceutical derivatives. This reaction is mainly catalyzed by noble metals, but rarely by metal oxides. Here, we report the development of monoclinic hydrogen-bearing ruthenium dioxide with a nominal composition of H x RuO 2 that can serve as a standalone catalyst for various hydrogenation reactions. The hydrogen-bearing oxide was synthesized through the water gas shift reaction of CO and H 2 O in the presence of rutile RuO 2 . The structure of H x RuO 2 was determined by synchrotron X-ray diffraction and density functional theory (DFT) studies. Solid-state 1 H NMR and Raman studies suggest that this compound possesses two types of isolated interstitial protons. H x RuO 2 is very active in hydrogenation of various arenes, including liquid organic hydrogen carriers, which are completely converted to the corresponding fully hydrogenated products under relatively mild conditions. In addition, high selectivities (>99%) were observed for the catalytic hydrogenation of functionalized nitroarenes to corresponding anilines. DFT simulations yield a small barrier for concerted proton transfer. The facile proton dynamics may be key in enabling selective hydrogenation reactions at relatively low temperature. Our findings inspire the search for hydrogen-containing metal oxides that could be employed as high-performance materials for catalysts, electrocatalysts, and fuel cells. 
    more » « less
  5. Abstract The precise effect of oxide understoichiometry on bulk oxide catalytic properties continues to remain a subject of intense investigation. Of specific interest in this regard is the role of oxygen vacancies present on bulk ceria catalysts that have recently been reported to represent a more cost‐effective alternative to the more toxic and expensive catalysts used industrially for the selective hydrogenation of acetylene to ethylene. Contrasting claims as to the effect of surface reduction on hydrogenation rates exist in the open literature, with vacancy formation attributed, in separate studies, either a favorable or a deleterious role in effecting hydrogenation turnovers. We report here the non‐monotonic behavior of ethene hydrogenation rates that subsumes both of these trends as a function of degree of surface reduction over a sufficiently large range of pre‐reduction temperatures. Steady state transient kinetic and isotopic exchange data combined with in‐situ titration experiments suggest that this non‐monotonic trend can be attributed not to a change in either the kinetic relevance of specific elementary steps or the hydrogenation mechanism, but rather to site requirements that stipulate the need for two distinct, proximal sites. We also show that the sensitivity of hydrogenation rates to surface reduction can be altered by varying ceria surface termination, with the more open (110) and (100) surfaces exhibiting a less asymmetric effect of surface reduction on ethene hydrogenation rates. 
    more » « less