The conformational transition of a fluorinated amphiphilic dendrimer is monitored by the1H signal from water, alongside the19F signal from the dendrimer. High‐field NMR data (chemical shift
Here we show that just three electrochemical scans to modest positive potentials result in substantial growth of 1–2 nm Au dendrimer‐encapsulated nanoparticles (DENs). We examined two sizes of Au DENs, denoted as G6‐NH2(Au147) and G6‐NH2(Au55), where G6‐NH2represents a sixth‐generation, amine‐terminated, poly(amidoamine) dendrimer and the subscripts, 147 and 55, represent the average number of atoms in each size of DENs.
- Award ID(s):
- 1903576
- PAR ID:
- 10272011
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemElectroChem
- Volume:
- 8
- Issue:
- 13
- ISSN:
- 2196-0216
- Page Range / eLocation ID:
- p. 2545-2555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract δ , self‐diffusion coefficientD , longitudinal relaxation rateR 1, and transverse relaxation rateR 2) for both dendrimer (19F) and water (1H) match each other in detecting the conformational transition. Among all parameters for both nuclei, the water proton transverse‐relaxation rateR 2(1H2O) displays the highest relative scale of change upon conformational transition of the dendrimer. Hydrogen/deuterium‐exchange mass spectrometry reveals that the compact form of the dendrimer has slower proton exchange with water than the extended form. This result suggests that the sensitivity ofR 2(1H2O) toward dendrimer conformation originates, at least partially, from the difference in proton exchange efficiency between different dendrimer conformations. Finally, we also demonstrated that this conformational transition could be conveniently monitored using a low‐field benchtop NMR spectrometer viaR 2(1H2O). The1H2O signal thus offers a simple way to monitor structural changes of macromolecules using benchtop time‐domain NMR. -
Dissecting Critical Factors for Electrochemical CO 2 Reduction on Atomically Precise Au Nanoclusters
Abstract This work investigates the critical factors impacting electrochemical CO2reduction reaction (CO2RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2RR is studied by precisely controlling NC size in the 1–2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface‐to‐volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2RR performance of Au38isomers (Au38Q and Au38T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2RR activity and selectivity. Au38Q shows higher activity and selectivity towards CO than Au38T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38Q than Au38T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2RR performance of identical size Au NCs. Overall, this work provides important structure–property relationships for tailoring the NCs for CO2RR.
-
Dissecting Critical Factors for Electrochemical CO 2 Reduction on Atomically Precise Au Nanoclusters
Abstract This work investigates the critical factors impacting electrochemical CO2reduction reaction (CO2RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2RR is studied by precisely controlling NC size in the 1–2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface‐to‐volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2RR performance of Au38isomers (Au38Q and Au38T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2RR activity and selectivity. Au38Q shows higher activity and selectivity towards CO than Au38T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38Q than Au38T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2RR performance of identical size Au NCs. Overall, this work provides important structure–property relationships for tailoring the NCs for CO2RR.
-
Abstract Wildfires are a major source of gas‐phase ammonia (NH3) to the atmosphere. Quantifying the evolution and fate of this NH3is important to understanding the formation of secondary aerosol in smoke and its accompanying effects on radiative balance and nitrogen deposition. Here, we use data from the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) to add new empirical constraints on the e‐folding loss timescale of NH3and its relationship with particulate ammonium (
p NH4) within wildfire smoke plumes in the western U.S. during summer 2018. We show that the e‐folding loss timescale of NH3with respect to particle‐phase partitioning ranges from ∼24 to ∼4000 min (median of 55 min). Within these same plumes, oxidation of nitrogen oxides is observed concurrent with increases in the fraction ofp NH4in each plume sampled, suggesting that formation of ammonium nitrate (NH4NO3) is likely. We find wide variability in how close ourin situ measurements of NH4NO3are to those expected in a dry thermodynamic equilibrium, and find that NH4NO3is most likely to form in fresh, dense smoke plumes injected at higher altitudes and colder temperatures. In chemically older smoke we observe correlations between both the fraction ofp NH4and the fraction of particulate nitrate (p NO3) in the aerosol with temperature, providing additional evidence of the presence of NH4NO3and the influence of injection height on gas‐particle partitioning of NH3. -
Abstract Freshwater snails of the genus
Biomphalaria serve as intermediate hosts for the digenetic trematodeSchistosoma mansoni , the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors inBiomphalaria glabrata , the major intermediate host forS .mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF‐NH2‐related peptide (FaRP) family were identified inB .glabrata . One transcript encoded a precursor polypeptide (Bgl‐FaRP1 ; 292 amino acids) that included eight copies of the tetrapeptide FMRF‐NH2and single copies of FIRF‐NH2, FLRF‐NH2, and pQFYRI‐NH2. The second transcript encoded a precursor (Bgl‐FaRP2 ;347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF‐NH2and 1 copy of SKPYMRF‐NH2. The precursor encoded by the third transcript (Bgl‐FaRP3 ; 287 amino acids) recapitulatedBgl‐FaRP2 but lacked the full SKPYMRF‐NH2peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems ofB .glabrata andB .alexandrina , a major intermediate host forS .mansoni in Egypt. FMRF‐NH2‐like immunoreactive (FMRF‐NH2‐li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non‐FMRF‐NH2peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF‐NH2‐li neurons. This study supports the participation of FMRF‐NH2‐related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism inBiomphalaria .