skip to main content


Title: Global Importance of Hydroxymethanesulfonate in Ambient Particulate Matter: Implications for Air Quality
Abstract

Sulfur compounds are an important constituent of particulate matter, with impacts on climate and public health. While most sulfur observed in particulate matter has been assumed to be sulfate, laboratory experiments reveal that hydroxymethanesulfonate (HMS), an adduct formed by aqueous phase chemical reaction of dissolved HCHO and SO2, may be easily misinterpreted in measurements as sulfate. Here we present observational and modeling evidence for a ubiquitous global presence of HMS. We find that filter samples collected in Shijiazhuang, China, and examined with ion chromatography within 9 days show as much as 7.6 μg m−3of HMS, while samples from Singapore examined 9–18 months after collection reveal ~0.6 μg m−3of HMS. The Shijiazhuang samples show only minor traces of HMS 4 months later, suggesting that HMS had decomposed over time during sample storage. In contrast, the Singapore samples do not clearly show a decline in HMS concentration over 2 months of monitoring. Measurements from over 150 sites, primarily derived from the IMPROVE network across the United States, suggest the ubiquitous presence of HMS in at least trace amounts as much as 60 days after collection. The degree of possible HMS decomposition in the IMPROVE observations is unknown. Using the GEOS‐Chem chemical transport model, we estimate that HMS may account for 10% of global particulate sulfur in continental surface air and over 25% in many polluted regions. Our results suggest that reducing emissions of HCHO and other volatile organic compounds may have a co‐benefit of decreasing particulate sulfur.

 
more » « less
Award ID(s):
1644998
NSF-PAR ID:
10455055
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
18
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3), and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning. 
    more » « less
  2. We here report chemical characteristics relevant to the fate and transport of the recently discovered environmental toxicant 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or “6PPDQ”). 6PPDQ is a transformation product of the tire rubber antioxidant 6PPD that is ubiquitous in roadway environments, including atmospheric particulate matter, soils, runoff, and receiving waters, after dispersal from tire rubber use and wear on roadways. The aqueous solubility and octanol–water partitioning coefficient ( i.e. log  K OW ) for 6PPDQ were measured to be 38 ± 10 μg L −1 and 4.30 ± 0.02, respectively. Within the context of analytical measurement and laboratory processing, sorption to various laboratory materials was evaluated, indicating that glass was largely inert but loss of 6PPDQ to other materials was common. Aqueous leaching simulations from tire tread wear particles (TWPs) indicated short term release of ∼5.2 μg 6PPDQ per gram TWP over 6 h under flow-through conditions. Aqueous stability tests observed a slight-to-moderate loss of 6PPDQ over 47 days (26 ± 3% loss) for pH 5, 7 and 9. These measured physicochemical properties suggest that 6PPDQ is generally poorly soluble but fairly stable over short time periods in simple aqueous systems. 6PPDQ can also leach readily from TWPs for subsequent environmental transport, posing high potential for adverse effects in local aquatic environments. 
    more » « less
  3. Organosulfates (OSs) are the most abundant class of organosulfur compounds (OrgS) in atmospheric fine particulate matter (PM2.5). Globally, isoprene‐derived OSs (iOSs) are the most abundantly reported OSs. The methyltetrol sulfates (MTSs), formed from multiphase chemical reactions of isoprene‐derived epoxidiols (IEPOX) with acidic sulfate aerosols, are the predominant iOSs. A recent study revealed that the heterogeneous hydroxyl radical (•OH) oxidation of fine particulate MTSs yields several highly oxygenated and functionalized OSs previously attributed to non‐IEPOX pathways. By using hydrophilic interaction liquid chromatography interfaced to electrospray ionization high‐resolution quadrupole time‐of‐flight mass spectrometry (HILIC/ESI‐HRQTOFMS), iOSs were quantitatively characterized in PM2.5 collected from 20 ground sites within the Interagency Monitoring of Protected Visual Environments (IMPROVE) network during the 2016 summer and winter seasons. Total water‐soluble sulfur (TWS‐S) and sulfur in the form of inorganic sulfate (Sinorg) were determined by inductively coupled plasmaoptical emission spectroscopy (ICP‐OES) and ion chromatography (IC), respectively. The difference between TWS‐S and Sinorg was used as an upper bound estimate of water‐soluble OrgS concentration. Significantly higher OrgS concentrations, coincident with elevated iOS concentrations, were observed only in summer. On average, iOSs (130 ± 60, up to 240 ng m‐3) explained 29% (± 7%) of OrgS and 5% (± 2%) of organic matter (OM = 1.8*OC) in summertime PM2.5 collected from the eastern U.S. For the western U.S., iOSs (11 ± 6 ng m‐3) account for 6% (± 5%) of OrgS and 0.7% (± 0.4%) of OM. This study provides critical insights into the abundance, prevalence, spatial variability of iOSs across the U.S. 
    more » « less
  4. null (Ed.)
    Urban air pollution poses a major threat to human health. Understanding where and when urban air pollutant concentrations peak is essential for effective air quality management and sustainable urban development. To this end, we implement a mobile monitoring methodology to determine the spatiotemporal distribution of particulate matter (PM) and black carbon (BC) throughout Philadelphia, Pennsylvania and use hot spot analysis and heatmaps to determine times and locations where pollutant concentrations are highest. Over the course of 12 days between June 27 and July 29, 2019, we measured air pollution concentrations continuously across two 150 mile (241.4 km) long routes. Average daily mean concentrations were 11.55 ± 5.34 μg/m 3 (PM 1 ), 13.48 ± 5.59 μg/m 3 (PM 2.5 ), 16.13 ± 5.80 μg/m 3 (PM 10 ), and 1.56 ± 0.39 μg/m 3 (BC). We find that fine PM size fractions (PM 2.5 ) constitute approximately 84% of PM 10 and that BC comprises 11.6% of observed PM 2.5 . Air pollution hotspots across three size fractions of PM (PM 1 , PM 2.5 , and PM 10 ) and BC had similar distributions throughout Philadelphia, but were most prevalent in the North Delaware, River Wards, and North planning districts. A plurality of detected hotspots found throughout the data collection period (30.19%) occurred between the hours of 8:00 AM–9:00 AM. 
    more » « less
  5. Abstract

    Authigenic greigite may form at any time within a sediment during diagenesis. Its formation pathway, timing of formation, and geological preservation potential are key to resolving the fidelity of (paleo‐)magnetic signals in greigite‐bearing sediments. In the cored sequence of the International Ocean Discovery Program Expedition 362 (Sumatra Subduction Margin), multiple organic‐rich mudstone horizons have high magnetic susceptibilities. The high‐susceptibility horizons occur immediately below the most bioturbated intervals at the top of muddy turbidite beds. Combined mineral magnetic, microscopic, and chemical analyses on both thin sections and magnetic mineral extracts of sediments from a typical interval (∼1,103.80–1,108.80 m below seafloor) reveal the presence of coarse‐grained greigite aggregates (particles up to 50–75 μm in size). The greigite formed under nonsteady state conditions caused by the successive turbidites. Organic matter, iron (oxy)(hydr)oxides, Fe2+, and sulfides and/or sulfate were enriched in these intensively bioturbated horizons. This facilitated greigite formation and preservation within a closed diagenetic system created by the ensuing turbidite pulse, where pyritization was arrested due to insufficient sulfate supply relative to Fe (oxy)(hydr)oxide. This may represent a novel greigite formation pathway under conditions modulated by turbidites and bioturbation. Paleomagnetic analyses indicate that the early diagenetic greigite preserves primary (quasi‐)syn‐sedimentary magnetic records. The extremely high greigite content (0.06–1.30 wt% with an average of 0.50 wt% estimated from their saturation magnetization) implies that the bioturbated turbiditic deposits are an important sink for iron and sulfur. Mineral magnetic methods, thus, may offer a window to better understand the marine Fe–S–C cycle.

     
    more » « less