skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: RainbowSTORM: an open-source ImageJ plug-in for spectroscopic single-molecule localization microscopy (sSMLM) data analysis and image reconstruction
Abstract Summary Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures the spatial locations and full spectra of stochastically emitting fluorescent single molecules. It provides an optical platform to develop new multimolecular and functional imaging capabilities. While several open-source software suites provide subdiffraction localization of fluorescent molecules, software suites for spectroscopic analysis of sSMLM data remain unavailable. RainbowSTORM is an open-source ImageJ/FIJI plug-in for end-to-end spectroscopic analysis and visualization for sSMLM images. RainbowSTORM allows users to calibrate, preview and quantitatively analyze emission spectra acquired using different reported sSMLM system designs and fluorescent labels. Availability and implementation RainbowSTORM is a java plug-in for ImageJ (https://imagej.net)/FIJI (http://fiji.sc) freely available through: https://github.com/FOIL-NU/RainbowSTORM. RainbowSTORM has been tested with Windows and Mac operating systems and ImageJ/FIJI version 1.52. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1706642
PAR ID:
10272369
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Xu, Jinbo
Date Published:
Journal Name:
Bioinformatics
Volume:
36
Issue:
19
ISSN:
1367-4803
Page Range / eLocation ID:
4972 to 4974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Summary

    This note describes nTracer, an ImageJ plug-in for user-guided, semi-automated tracing of multispectral fluorescent tissue samples. This approach allows for rapid and accurate reconstruction of whole cell morphology of large neuronal populations in densely labeled brains.

    Availability and implementation

    nTracer was written as a plug-in for the open source image processing software ImageJ. The software, instructional documentation, tutorial videos, sample image and sample tracing results are available at https://www.cai-lab.org/ntracer-tutorial.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Understanding the cell biology of protein trafficking and homeostasis requires reproducible methods for identifying and quantifying proteins within cells or cellular structures. Imaging protocols for measuring punctate protein accumulation in linear structures, for example the neurites of C. elegans, have relied on proprietary software for a full range of analysis capabilities. Here we describe a set of macros written for the NIH-supported imaging software ImageJ or Fiji (Fiji is Just ImageJ) that reliably identify protein puncta so that they can be analyzed with respect to intensity, density, and width at half-maximum intensity (Full-Width, Half-Maximum, FWHM). We provide an explanation of the workflow, data outputs, and limitations of the Fiji macro. As part of this integration, we also provide two independent data sets with side-by-side analyses using the proprietary IgorPro software and the Fiji macro (Hulsey-Vincent, et al. A, B., 2023 submitted). The Fiji macro is an important new tool because it provides robust, reproducible data analysis in a free, open-source format.

     
    more » « less
  3. Abstract

    Spectroscopic single-molecule localization microscopy (sSMLM) was used to achieve simultaneous imaging and spectral analysis of single molecules for the first time. Current sSMLM fundamentally suffers from a reduced photon budget because the photons from individual stochastic emissions are divided into spatial and spectral channels. Therefore, both spatial localization and spectral analysis only use a portion of the total photons, leading to reduced precisions in both channels. To improve the spatial and spectral precisions, we present symmetrically dispersed sSMLM, or SDsSMLM, to fully utilize all photons from individual stochastic emissions in both spatial and spectral channels. SDsSMLM achieved 10-nm spatial and 0.8-nm spectral precisions at a total photon budget of 1000. Compared with the existing sSMLM using a 1:3 splitting ratio between spatial and spectral channels, SDsSMLM improved the spatial and spectral precisions by 42% and 10%, respectively, under the same photon budget. We also demonstrated multicolour imaging of fixed cells and three-dimensional single-particle tracking using SDsSMLM. SDsSMLM enables more precise spectroscopic single-molecule analysis in broader cell biology and material science applications.

     
    more » « less
  4. Abstract Summary

    FunImageJ is a Lisp framework for scientific image processing built upon the ImageJ software ecosystem. The framework provides a natural functional-style for programming, while accounting for the performance requirements necessary in big data processing commonly encountered in biological image analysis.

    Availability and implementation

    Freely available plugin to Fiji (http://fiji.sc/#download). Installation and use instructions available at http://imagej.net/FunImageJ.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Spectroscopic single-molecule localization microscopy (sSMLM) generates super-resolution images of single molecules while simultaneously capturing the spectra of their fluorescence emissions. However, sSMLM splits photons from single-molecule emissions into a spatial channel and a spectral channel, reducing both channels’ precisions. It is also challenging in transmission grating-based sSMLM to achieve a large field-of-view (FOV) and avoid overlap between the spatial and spectral channels. The challenge in FOV has further significance in single-molecule tracking applications. In this work, we analyzed the correlation between the spatial and spectral channels in sSMLM to improve its spatial precision, and we developed a split-mirror assembly to enlarge its FOV. We demonstrate the benefits of these improvements by tracking quantum dots. We also show that we can reduce particle-identification ambiguity by tagging each particle with its unique spectral characteristics.

     
    more » « less