skip to main content


Title: The brain transcriptome of the wolf spider, Schizocosa ocreata
Abstract Objectives Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders ( Schizocosa ocreata ). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases.  more » « less
Award ID(s):
1751296
NSF-PAR ID:
10272995
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
BMC Research Notes
Volume:
14
Issue:
1
ISSN:
1756-0500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes.

    Results

    In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble.

    Conclusions

    Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from:http://bioinfolab.unl.edu/emlab/consemble/.

     
    more » « less
  2. Abstract Motivation

    De novo transcriptome analysis using RNA-seq offers a promising means to study gene expression in non-model organisms. Yet, the difficulty of transcriptome assembly means that the contigs provided by the assembler often represent a fractured and incomplete view of the transcriptome, complicating downstream analysis. We introduce Grouper, a new method for clustering contigs from de novo assemblies that are likely to belong to the same transcripts and genes; these groups can subsequently be analyzed more robustly. When provided with access to the genome of a related organism, Grouper can transfer annotations to the de novo assembly, further improving the clustering.

    Results

    On de novo assemblies from four different species, we show that Grouper is able to accurately cluster a larger number of contigs than the existing state-of-the-art method. The Grouper pipeline is able to map greater than 10% more reads against the contigs, leading to accurate downstream differential expression analyses. The labeling module, in the presence of a closely related annotated genome, can efficiently transfer annotations to the contigs and use this information to further improve clustering. Overall, Grouper provides a complete and efficient pipeline for processing de novo transcriptomic assemblies.

    Availability and implementation

    The Grouper software is freely available at https://github.com/COMBINE-lab/grouper under the 2-clause BSD license.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implemented a comprehensive repeat annotation workflow using previously known human repeats and de novo repeat modeling followed by manual curation, including assessing overlaps with gene annotations, segmental duplications, tandem repeats, and annotated repeats. Using this method, we developed an updated catalog of human repetitive sequences and refined previous repeat annotations. We discovered 43 previously unknown repeats and repeat variants and characterized 19 complex, composite repetitive structures, which often carry genes, across T2T-CHM13. Using precision nuclear run-on sequencing (PRO-seq) and CpG methylated sites generated from Oxford Nanopore Technologies long-read sequencing data, we assessed RNA polymerase engagement across retroelements genome-wide, revealing correlations between nascent transcription, sequence divergence, CpG density, and methylation. These analyses were extended to evaluate RNA polymerase occupancy for all repeats, including high-density satellite repeats that reside in previously inaccessible centromeric regions of all human chromosomes. Moreover, using both mapping-dependent and mapping-independent approaches across early developmental stages and a complete cell cycle time series, we found that engaged RNA polymerase across satellites is low; in contrast, TE transcription is abundant and serves as a boundary for changes in CpG methylation and centromere substructure. Together, these data reveal the dynamic relationship between transcriptionally active retroelement subclasses and DNA methylation, as well as potential mechanisms for the derivation and evolution of new repeat families and composite elements. Focusing on the emerging T2T-level assembly of the HG002 X chromosome, we reveal that a high level of repeat variation likely exists across the human population, including composite element copy numbers that affect gene copy number. Additionally, we highlight the impact of repeats on the structural diversity of the genome, revealing repeat expansions with extreme copy number differences between humans and primates while also providing high-confidence annotations of retroelement transduction events. CONCLUSION The comprehensive repeat annotations and updated repeat models described herein serve as a resource for expanding the compendium of human genome sequences and reveal the impact of specific repeats on the human genome. In developing this resource, we provide a methodological framework for assessing repeat variation within and between human genomes. The exhaustive assessment of the transcriptional landscape of repeats, at both the genome scale and locally, such as within centromeres, sets the stage for functional studies to disentangle the role transcription plays in the mechanisms essential for genome stability and chromosome segregation. Finally, our work demonstrates the need to increase efforts toward achieving T2T-level assemblies for nonhuman primates and other species to fully understand the complexity and impact of repeat-derived genomic innovations that define primate lineages, including humans. Telomere-to-telomere assembly of CHM13 supports repeat annotations and discoveries. The human reference T2T-CHM13 filled gaps and corrected collapsed regions (triangles) in GRCh38. Combining long read–based methylation calls, PRO-seq, and multilevel computational methods, we provide a compendium of human repeats, define retroelement expression and methylation profiles, and delineate locus-specific sites of nascent transcription genome-wide, including previously inaccessible centromeres. SINE, short interspersed element; SVA, SINE–variable number tandem repeat– Alu ; LINE, long interspersed element; LTR, long terminal repeat; TSS, transcription start site; pA, xxxxxxxxxxxxxxxx. 
    more » « less
  4. Transcriptomic reconstructions without reference (i.e., de novo) are common for data samples derived from non-model biological systems. These assemblies involve massive parallel short read sequence reconstructions from experiments, but they usually employ ad-hoc bioinformatic workflows that exhibit limited standardization and customization. The increasing number of transcriptome assembly software continues to provide little room for standardization which is exacerbated by the lack of studies on modularity that compare the effects of assembler synergy. We developed a customizable management workflow for de novo transcriptomics that includes modular units for short read cleaning, assembly, validation, annotation, and expression analysis by connecting twenty-five individual bioinformatic tools. With our software tool, we were able to compare the assessment scores based on 129 distinct single-, bi- and tri-assembler combinations with diverse k-mer size selections. Our results demonstrate a drastic increase in the quality of transcriptome assemblies with bi- and tri- assembler combinations. We aim for our software to improve de novo transcriptome reconstructions for the ever-growing landscape of RNA-seq data derived from non-model systems. We offer guidance to ensure the most complete transcriptomic reconstructions via the inclusion of modular multi-assembly software controlled from a single master console. 
    more » « less
  5. Molecular studies have shown that Neotropical fishes of the order Characiformes have undergone two independent events of cave colonization. Among these fishes are the Mexican blind cavefish ( Astyanax mexicanus ), a well-studied model system for cave adaptation, and the lesser-known Brazilian blind characid ( Stygichthys typhlops ). Although various genomic and transcriptomic approaches have been used to identify genes responsible for cave adaptation in A. mexicanus , these genetic factors have not been explored in an evolutionary comparative framework in cave-adapted characiforms. To address this gap, we assembled a de novo transcriptome for the Brazilian blind characid, identifying 27,845 assembled unigenes, of which 22,580 were assigned as putative one-to-one orthologs to the Mexican cavefish. We then used the package RELAX to analyze 789 genes in cavefishes, identifying 311 genes under intensified or relaxed selection. Our analysis revealed 26 genes with signatures of convergent, relaxed selection linked to vision, circadian cycles, pigmentation, and hematopoiesis processes. Additionally, we conducted differential gene expression analyzes between the snout region and a control tissue sample (muscle), identifying 96 differentially expressed genes associated with cell-surface-bound and calcium-binding proteins. Our study offers insights into the genetic mechanisms underlying cave adaptation in characiform fishes, particularly the Brazilian blind characid. Moreover, our transcriptome dataset and list of genes under convergent, relaxed, and intensified selection serve as a valuable resource for future functional studies of genes involved in cave adaptation. Our work highlights the importance of examining genetic adaptations in multiple independent lineages to better understand the evolutionary processes underlying cave adaptation. 
    more » « less