skip to main content


Title: Dendrochronological dates confirm a Late Prehistoric population decline in the American Southwest derived from radiocarbon dates
The northern American Southwest provides one of the most well-documented cases of human population growth and decline in the world. The geographic extent of this decline in North America is unknown owing to the lack of high-resolution palaeodemographic data from regions across and beyond the greater Southwest, where archaeological radiocarbon data are often the only available proxy for investigating these palaeodemographic processes. Radiocarbon time series across and beyond the greater Southwest suggest widespread population collapses from AD 1300 to 1600. However, radiocarbon data have potential biases caused by variable radiocarbon sample preservation, sample collection and the nonlinearity of the radiocarbon calibration curve. In order to be confident in the wider trends seen in radiocarbon time series across and beyond the greater Southwest, here we focus on regions that have multiple palaeodemographic proxies and compare those proxies to radiocarbon time series. We develop a new method for time series analysis and comparison between dendrochronological data and radiocarbon data. Results confirm a multiple proxy decline in human populations across the Upland US Southwest, Central Mesa Verde and Northern Rio Grande from AD 1300 to 1600. These results lend confidence to single proxy radiocarbon-based reconstructions of palaeodemography outside the Southwest that suggest post-AD 1300 population declines in many parts of North America. This article is part of the theme issue ‘Cross-disciplinary approaches to prehistoric demography’.  more » « less
Award ID(s):
1637171 1822033
NSF-PAR ID:
10273093
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
376
Issue:
1816
ISSN:
0962-8436
Page Range / eLocation ID:
20190718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Summer temperatures across eastern North America (hereafter East) will soon reach a level consistently above any observation experienced during the instrumental period. Increasing temperatures will have negative impacts on natural (e.g., water, plant and animal communities) and human (e.g., health, infrastructure, economies) systems upon which the large and growing centres of human population across the region depend. Within the network of Northern Hemisphere tree‐ring temperature proxy records, one of the most obvious geographic holes is the East, where few temperature‐sensitive proxies exist. Here we present the first steps towards building a network of temperature‐sensitive proxy records across the East using blue light intensity (BI) methods applied to the tree rings of multiple temperature sensitive tree species situated from North Carolina to Maine, USA. Our overall objective is to report on the most viable species for BI analysis across different regions of the East (e.g., Southeast US, Midwest US, Northeast US/Canadian Maritimes) by exploring temporal (e.g., since ca. 1900) and spatial relationships between instrumental temperatures and BI metrics. We found BI to be a strong predictor of March–October mean air temperature (R2= 0.61) across the Northeast US/eastern Canada, and Sep‐Oct maximum air temperature (R2= 0.42) across the Southeast US. Of all species tested,Tsuga canadensisandPicea rubenscontained the strongest BI temperature signal. Adding more BI sites from these and potentially other species, as well as inclusion of other temperature proxies (e.g., ring widths) will allow for the development of a skilful broad‐scale and long‐term temperature field reconstruction across the East.

     
    more » « less
  2. Temperature variability likely played an important role in determining the spread and productive potential of North America’s key prehispanic agricultural staple, maize. The United States Southwest (SWUS) also served as the gateway for maize to reach portions of North America to the north and east. Existing temperature reconstructions for the SWUS are typically low in spatial or temporal resolution, shallow in time depth, or subject to unknown degrees of insensitivity to low-frequency variability, hindering accurate determination of temperature’s role in agricultural productivity and variability in distribution and success of prehispanic farmers. Here, we develop a model-based modern analog technique (MAT) approach applied to 29 SWUS fossil pollen sites to reconstruct July temperatures from 3000 BC to AD 2000. Temperatures were generally warmer than or similar to those of the modern (1961–1990) period until the first century AD. Our reconstruction also notes rapid warming beginning in the AD 1800s; modern conditions are unprecedented in at least the last five millennia in the SWUS. Temperature minima were reached around 1800 BC, 1000 BC, AD 400 (the global minimum in this series), the mid-to-late AD 900s, and the AD 1500s. Summer temperatures were generally depressed relative to northern hemisphere norms by a dominance of El Niño-like conditions during much of the second millenium BC and the first millenium AD, but somewhat elevated relative to those same norms in other periods, including from about AD 1300 to the present, due to the dominance of La Niña-like conditions.

     
    more » « less
  3. Abstract

    Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.

     
    more » « less
  4. Archaeologists now routinely use summed radiocarbon dates as a measure of past population size, yet few have coupled these measures to theoretical expectations about social organization. To help move the ‘dates as data’ approach from description to explanation, this paper proposes a new integrative theory and method for quan- titative analyses of radiocarbon summed probability distributions (SPDs) in space. We present this new approach to ‘SPDs in space’ with a case study of 3571 geo-referenced radiocarbon dates from Wyoming, USA. We develop a SPD for the Holocene in Wyoming, then analyze the spatial distribution of the SPD as a function of time using a standard nearest-neighbor statistic. We compare population growth and decline throughout the Holocene with expectations for different Ideal Distribution Models from population ecology that predict the relationship be- tween habitat quality and population density. Results suggest that populations in Wyoming were initially clustered and then became increasingly dispersed through the course of the Holocene. These results suggest that Allee-like benefits to aggregation, rather than ideal free-driven dispersion patterns, explain settlement decisions in response to growing populations. Our approach is a first step in constructing a method and theory for de- scribing relationships between social organization and population growth trends derived from archaeological radiocarbon time-series. 
    more » « less
  5. Abstract Objectives

    The North American archaeological record supports a Holocene origin of Arctic Indigenous peoples. Although the Paleo‐Inuit were present for millennia, archaeological and genetic studies suggest that modern peoples descend from a second, more recent tradition known as the Neo‐Inuit. Origins of the Neo‐Inuit and their relations to the earlier and later Indigenous peoples are an area of active study. Here, we genetically analyze the maternal lineages present at Nuvuk, once the northernmost community in Alaska and located in a region identified as a possible origin point of the Neo‐Inuit Thule. The cemetery at Nuvuk contains human remains representing a nearly one thousand year uninterrupted occupation from early Thule to post‐contact Iñupiat.

    Materials and methods

    We selected 44 individuals from Nuvuk with calibrated dates between 981 AD and 1885 AD for molecular analysis. We amplified and sequenced the hypervariable segment I of the mitogenome. We compared the Nuvuk data with previously published sequences from 68 modern and ancient communities from across Asia and North America. Phylogeographic analyses suggest possible scenarios of Holocene Arctic and sub‐Arctic population movements.

    Results

    We successfully retrieved sequence data from 39 individuals. Haplogroup frequencies in Nuvuk were typed as 66.7% A2b1, 25.6% A2a, and 7.7% D4b1a2a1a. These results suggest that the population at Nuvuk was closest to the ancient Thule and modern Inuit of Canada, and to the Siberian Naukan people. We confirm that haplogroups A2a, A2b1, D2a, and D4b1a2a1a appear at high frequency in Arctic and sub‐Arctic populations of North America and Chukotka. Sister clades D2b and D4b1a2a1b are present in Asian and Eastern European populations.

    Discussion

    The ancient mitochondrial sequences from Nuvuk confirm the link between the North Slope and the Thule who later spread east, and the maternal discontinuity between the Neo‐Inuit and Paleo‐Inuit. We suggest haplogroups A2a, A2b, and D4b1a2a1a are linked to the ancestors of the Thule in eastern Beringia, whereas the D2 and D4b1a2a1 clades appear to have Asian Holocene origins. Further Siberian and Alaskan genomes are necessary to clarify these population migrations beyond a simple two‐wave scenario of Neo‐Inuit and Paleo‐Inuit.

     
    more » « less