skip to main content


Title: Cryogenic spectrometer for measuring the far-IR to millimeter-wave absorptivity of cosmic analog dusts

We report on the design, construction, and performance of a custom apparatus built to measure the frequency- and temperature-dependent absorptivity of millimeter-wave light by cosmic analog dusts. We highlight the unique challenges faced as well as a few key innovations that are part of the instrument. Among those is an ultra-compact Fourier transform spectrometer. We have measured its effective frequency range and FWHM resolution to be 150–2100 GHz and∼<#comment/>45GHz, respectively. Another innovation is a cold sample positioner whose temperature can be controlled within the range of 3.7–50 K. The use of a pulse-tube cryocooler results in a pulse-synchronous signal that dominates the detector (bolometer) signal. Methods used to address that challenge are also presented.

 
more » « less
NSF-PAR ID:
10273153
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
20
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 5880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An optical parametric oscillator (OPO) is developed and characterized for the simultaneous generation of ultraviolet (UV) and near-UV nanosecond laser pulses for the single-shot Rayleigh scattering and planar laser-induced-fluorescence (PLIF) imaging of methylidyne (CH) and nitric oxide (NO) in turbulent flames. The OPO is pumped by a multichannel, 8-pulse Nd:YAG laser cluster that produces up to 225 mJ/pulse at 355 nm with pulse spacing of 100 µs. The pulsed OPO has a conversion efficiency of 9.6% to the signal wavelength of∼<#comment/>430nmwhen pumped by the multimode laser. Second harmonic conversion of the signal, with 3.8% efficiency, is used for the electronic excitation of the A-X (1,0) band of NO at∼<#comment/>215nm, while the residual signal at 430 nm is used for direct excitation of the A-X (0,0) band of the CH radical and elastic Rayleigh scattering. The section of the OPO signal wavelength for simultaneous CH and NO PLIF imaging is performed with consideration of the pulse energy, interference from the reactant and product species, and the fluorescence signal intensity. The excitation wavelengths of 430.7 nm and 215.35 nm are studied in a laminar, premixedCH4−<#comment/>H2−<#comment/>NH3–air flame. Single-shot CH and NO PLIF and Rayleigh scatter imaging is demonstrated in a turbulentCH4−<#comment/>H2−<#comment/>NH3diffusion flame using a high-speed intensified CMOS camera. Analysis of the complementary Rayleigh scattering and CH and NO PLIF enables identification and quantification of the high-temperature flame layers, the combustion product zones, and the fuel-jet core. Considerations for extension to simultaneous, 10-kHz-rate acquisition are discussed.

     
    more » « less
  2. This paper presents a 3D model of a terahertz photoconductive antenna (PCA) using black phosphorus, an emerging 2D anisotropic material, as the semiconductor layer. This work aims at understanding the potential of black phosphorus (BP) to advance the signal generation and bandwidth of conventional terahertz (THz) PCAs. The COMSOL Multiphysics package, based on the finite element method, is utilized to model the 3D BP PCA emitter using four modules: the frequency domain RF module to solve Maxwell’s equations, the semiconductor module to calculate the photocurrent, the heat transfer in solids module to calculate the temperature variations, and the transient RF module to calculate the THz radiated electric field pulse. The proposed 3D model is computationally intensive where the PCA device includes thin layers of thicknesses ranging from nano- to microscale. The symmetry of the configuration was exploited by applying the perfect electric and magnetic boundary conditions to reduce the computational domain to only one quarter of the device in the RF module. The results showed that the temperature variation due to the conduction of current induced by the bias voltage increased by only 0.162 K. In addition, the electromagnetic power dissipation in the semiconductor due to the femtosecond laser source showed an increase in temperature by 0.441 K. The results show that the temperature variations caused the peak of the photocurrent to increase by∼<#comment/>3.4%<#comment/>and∼<#comment/>10%<#comment/>, respectively, under a maximum bias voltage of 1 V and average laser power of 1 mW. While simulating the active area of the antenna provided accurate results for the optical and semiconductor responses, simulating the thermal effect on the photocurrent requires a larger computational domain to avoid false rise in temperature. Finally, the simulated THz signal generation electric field pulse exhibits a trend in increasing the bandwidth of the proposed BP PCA compared with the measured pulse of a reference commercial LT-GaAs PCA. Enhancing signal generation and bandwidth will improve THz imaging and spectroscopy for biomedical and material characterization applications.

     
    more » « less
  3. Electro-optic (EO) modulators rely on the interaction of optical and electrical signals with second-order nonlinear media. For the optical signal, this interaction can be strongly enhanced using dielectric slot–waveguide structures that exploit a field discontinuity at the interface between a high-index waveguide core and the low-index EO cladding. In contrast to this, the electrical signal is usually applied through conductive regions in the direct vicinity of the optical waveguide. To avoid excessive optical loss, the conductivity of these regions is maintained at a moderate level, thus leading to inherentRClimitations of the modulation bandwidth. In this paper, we show that these limitations can be overcome by extending the slot–waveguide concept to the modulating radio-frequency (RF) signal. Our device combines an RF slotline that relies onBaTiO3as a high-k dielectric material with a conventional silicon photonic slot waveguide and a highly efficient organic EO cladding material. In a proof-of-concept experiment, we demonstrate a 1 mm long Mach–Zehnder modulator that offers a 3 dB bandwidth of 76 GHz and a 6 dB bandwidth of 110 GHz along with a smallπ<#comment/>voltage of 1.3 V (Uπ<#comment/>L=1.3Vmm). We further demonstrate the viability of the device in a data-transmission experiment using four-state pulse-amplitude modulation (PAM4) at line rates up to 200 Gbit/s. Our first-generation devices leave vast room for further improvement and may open an attractive route towards highly efficient silicon photonic modulators that combine sub-1 mm device lengths with sub-1 V drive voltages and modulation bandwidths of more than 100 GHz.

     
    more » « less
  4. We experimentally demonstrate tunable optical single-sideband (SSB) generation using a tapped-delay-line (TDL) optical filter for 10 and 20 Gbit/s on/off-keying (OOK) signals and a 20 Gbit/s four-level pulse-amplitude-modulated (PAM4) signal. The optical SSB filter is realized by using an optical frequency comb, wavelength-dependent delay, and nonlinear wave-mixing to achieve the TDL function. Moreover, SSB tunability is achieved by adjusting the amplitude, phase, frequency spacing, and number of selected optical frequency comb lines. We show that the one-sideband suppression of a double-sideband (DSB) channel can be enhanced as the number of taps is increased; however, we do measure a∼<#comment/>1.5%<#comment/>error-vector-magnitude penalty. Furthermore, we demonstrate that the chromatic-dispersion-induced penalty after 80 km standard-single-mode-fiber transmission of a 10 Gbit/s SSB OOK signal without chromatic dispersion compensation has been reduced by><#comment/>3dBwhen compared to DSB.

     
    more » « less
  5. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043GHz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

     
    more » « less