skip to main content

Title: Search for the dark photon in B0 → A′A′, A′ → e+e−, μ+μ−, and π+π− decays at Belle
A bstract We present a search for the dark photon A ′ in the B 0 → A ′ A ′ decays, where A ′ subsequently decays to e + e − , μ + μ − , and π + π − . The search is performed by analyzing 772 × 10 6 $$ B\overline{B} $$ B B ¯ events collected by the Belle detector at the KEKB e + e − energy-asymmetric collider at the ϒ(4 S ) resonance. No signal is found in the dark photon mass range 0 . 01 GeV /c 2 ≤ m A ′ ≤ 2 . 62 GeV /c 2 , and we set upper limits of the branching fraction of B 0 → A ′ A ′ at the 90% confidence level. The products of branching fractions, $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {e}^{+}{e}^{-}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → e + e − 2 and $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {\mu}^{+}{\mu}^{-}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → μ + μ − 2 , have limits of the order of 10 − 8 depending more » on the A ′ mass. Furthermore, considering A ′ decay rate to each pair of charged particles, the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ are of the order of 10 − 8 –10 − 5 . From the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ , we obtain the Higgs portal coupling for each assumed dark photon and dark Higgs mass. The Higgs portal couplings are of the order of 10 − 2 –10 − 1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 40 MeV /c 2 and 10 − 1 –1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 3 GeV /c 2 . « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1913789
Publication Date:
NSF-PAR ID:
10273327
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
4
ISSN:
1029-8479
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We present measurements of the branching fractions for the decays B → Kμ + μ − and B → Ke + e − , and their ratio ( R K ), using a data sample of 711 fb − 1 that contains 772 × 10 6 $$ B\overline{B} $$ B B ¯ events. The data were collected at the ϒ(4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e − collider. The ratio R K is measured in five bins of dilepton invariant-mass-squared ( q 2 ): q 2 ∈ (0 . 1 , 4 . 0) , (4 . 00 , 8 . 12) , (1 . 0 , 6 . 0), (10 . 2 , 12 . 8) and ( > 14 . 18) GeV 2 /c 4 , along with the whole q 2 region. The R K value for q 2 ∈ (1 . 0 , 6 . 0) GeV 2 /c 4 is $$ {1.03}_{-0.24}^{+0.28} $$ 1.03 − 0.24 + 0.28 ± 0 . 01. The first and second uncertainties listed are statistical and systematic, respectively. All results for R K are consistent with Standard Model predictions. Wemore »also measure CP -averaged isospin asymmetries in the same q 2 bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the q 2 ∈ (1 . 0 , 6 . 0) GeV 2 /c 4 bin in the mode with muon final states. The measured differential branching fractions, $$ d\mathrm{\mathcal{B}} $$ d ℬ /dq 2 , are consistent with theoretical predictions for charged B decays, while the corresponding values are below the expectations for neutral B decays. We have also searched for lepton-flavor-violating B → Kμ ± e ∓ decays and set 90% confidence-level upper limits on the branching fraction in the range of 10 − 8 for B + → K + μ ± e ∓ , and B 0 → K 0 μ ± e ∓ modes.« less
  2. A bstract Searches for CP violation in the two-body decays $$ {D}_{(s)}^{+}\to {h}^{+}{\pi}^0 $$ D s + → h + π 0 and $$ {D}_{(s)}^{+}\to {h}^{+}\eta $$ D s + → h + η (where h + denotes a π + or K + meson) are performed using pp collision data collected by the LHCb experiment corresponding to either 9 fb − 1 or 6 fb − 1 of integrated luminosity. The π 0 and η mesons are reconstructed using the e + e − γ final state, which can proceed as three-body decays π 0 → e + e − γ and η → e + e − γ , or via the two-body decays π 0 → γγ and η → γγ followed by a photon conversion. The measurements are made relative to the control modes $$ {D}_{(s)}^{+}\to {K}_{\mathrm{S}}^0{h}^{+} $$ D s + → K S 0 h + to cancel the production and detection asymmetries. The CP asymmetries are measured to be $$ {\displaystyle \begin{array}{c}{\mathcal{A}}_{CP}\left({D}^{+}\to {\pi}^{+}{\pi}^0\right)=\left(-1.3\pm 0.9\pm 0.6\right)\%,\\ {}{\mathcal{A}}_{CP}\left({D}^{+}\to {K}^{+}{\pi}^0\right)=\left(-3.2\pm 4.7\pm 2.1\right)\%,\\ {}\begin{array}{c}{\mathcal{A}}_{CP}\left({D}^{+}\to {\pi}^{+}\eta \right)=\left(-0.2\pm 0.8\pm 0.4\right)\%,\\ {}{\mathcal{A}}_{CP}\left({D}^{+}\to {K}^{+}\eta \right)=\left(-6\pm 10\pm 4\right)\%,\\ {}\begin{array}{c}{\mathcal{A}}_{CP}\left({D}_s^{+}\to {K}^{+}{\pi}^0\right)=\left(-0.8\pm 3.9\pm 1.2\right)\%,\\ {}\begin{array}{c}{\mathcal{A}}_{CP}\left({D}_s^{+}\to {\pi}^{+}\eta \right)=\left(0.8\pm 0.7\pm 0.5\right)\%,\\ {}{\mathcal{A}}_{CP}\left({D}_s^{+}\to {K}^{+}\eta \right)=\left(0.9\pm 3.7\pm 1.1\right)\%,\end{array}\end{array}\end{array}\end{array}} $$more »A CP D + → π + π 0 = − 1.3 ± 0.9 ± 0.6 % , A CP D + → K + π 0 = − 3.2 ± 4.7 ± 2.1 % , A CP D + → π + η = − 0.2 ± 0.8 ± 0.4 % , A CP D + → K + η = − 6 ± 10 ± 4 % , A CP D s + → K + π 0 = − 0.8 ± 3.9 ± 1.2 % , A CP D s + → π + η = 0.8 ± 0.7 ± 0.5 % , A CP D s + → K + η = 0.9 ± 3.7 ± 1.1 % , where the first uncertainties are statistical and the second systematic. These results are consistent with no CP violation and mostly constitute the most precise measurements of $$ {\mathcal{A}}_{CP} $$ A CP in these decay modes to date.« less
  3. A bstract We quantify the effect of gauge bosons from a weakly coupled lepton flavor dependent U(1) ′ interaction on the matter background in the evolution of solar, atmospheric, reactor and long-baseline accelerator neutrinos in the global analysis of oscillation data. The analysis is performed for interaction lengths ranging from the Sun-Earth distance to effective contact neutrino interactions. We survey ∼ 10000 set of models characterized by the six relevant fermion U(1) ′ charges and find that in all cases, constraints on the coupling and mass of the Z′ can be derived. We also find that about 5% of the U(1) ′ model charges lead to a viable LMA-D solution but this is only possible in the contact interaction limit. We explicitly quantify the constraints for a variety of models including $$ \mathrm{U}{(1)}_{B-3{L}_e} $$ U 1 B − 3 L e , $$ \mathrm{U}{(1)}_{B-3{L}_{\mu }} $$ U 1 B − 3 L μ , $$ \mathrm{U}{(1)}_{B-3{L}_{\tau }} $$ U 1 B − 3 L τ , $$ \mathrm{U}{(1)}_{B-\frac{3}{2}\left({L}_{\mu }+{L}_{\tau}\right)} $$ U 1 B − 3 2 L μ + L τ , $$ \mathrm{U}{(1)}_{L_e-{L}_{\mu }} $$ U 1 L e − L μ , $$ \mathrm{U}{(1)}_{L_e-{L}_{\tau }} $$ U 1more »L e − L τ , $$ \mathrm{U}{(1)}_{L_e-\frac{1}{2}\left({L}_{\mu }+{L}_{\tau}\right)} $$ U 1 L e − 1 2 L μ + L τ . We compare the constraints imposed by our oscillation analysis with the strongest bounds from fifth force searches, violation of equivalence principle as well as bounds from scattering experiments and white dwarf cooling. Our results show that generically, the oscillation analysis improves over the existing bounds from gravity tests for Z′ lighter than ∼ 10 − 8 → 10 − 11 eV depending on the specific couplings. In the contact interaction limit, we find that for most models listed above there are values of g′ and M Z′ for which the oscillation analysis provides constraints beyond those imposed by laboratory experiments. Finally we illustrate the range of Z′ and couplings leading to a viable LMA-D solution for two sets of models.« less
  4. A bstract Using a data sample of 980 fb − 1 collected with the Belle detector at the KEKB asymmetric-energy e + e − collider, we study the processes of $$ {\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0} $$ Ξ c 0 → Λ K ¯ ∗ 0 , $$ {\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0} $$ Ξ c 0 → Σ 0 K ¯ ∗ 0 , and $$ {\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -} $$ Ξ c 0 → Σ + K ∗ − for the first time. The relative branching ratios to the normalization mode of $$ {\Xi}_c^0\to {\Xi}^{-}{\pi}^{+} $$ Ξ c 0 → Ξ − π + are measured to be $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.18\pm 0.02\left(\mathrm{stat}.\right)\pm 0.01\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.69\pm 0.03\left(\mathrm{stat}.\right)\pm 0.03\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.34\pm 0.06\left(\mathrm{stat}.\right)\pm 0.02\left(\mathrm{syst}.\right),\end{array}} $$ B Ξ c 0 → Λ K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.18 ± 0.02 stat . ± 0.01 syst . , B Ξ c 0 → Σ 0 K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.69 ± 0.03 stat . ± 0.03 syst . , B Ξ c 0 → Σ + K ∗more »− / B Ξ c 0 → Ξ − π + = 0.34 ± 0.06 stat . ± 0.02 syst . , where the uncertainties are statistical and systematic, respectively. We obtain $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)=\left(3.3\pm 0.3\left(\mathrm{stat}.\right)\pm 0.2\left(\mathrm{syst}.\right)\pm 1.0\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)=\left(12.4\pm 0.5\left(\mathrm{stat}.\right)\pm 0.5\left(\mathrm{syst}.\right)\pm 3.6\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast 0}\right)=\left(6.1\pm 1.0\left(\mathrm{stat}.\right)\pm 0.4\left(\mathrm{syst}.\right)\pm 1.8\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\end{array}} $$ B Ξ c 0 → Λ K ¯ ∗ 0 = 3.3 ± 0.3 stat . ± 0.2 syst . ± 1.0 ref . × 10 − 3 , B Ξ c 0 → Σ 0 K ¯ ∗ 0 = 12.4 ± 0.5 stat . ± 0.5 syst . ± 3.6 ref . × 10 − 3 , B Ξ c 0 → Σ + K ∗ 0 = 6.1 ± 1.0 stat . ± 0.4 syst . ± 1.8 ref . × 10 − 3 , where the uncertainties are statistical, systematic, and from $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 → Ξ − π + , respectively. The asymmetry parameters $$ \alpha \left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right) $$ α Ξ c 0 → Λ K ¯ ∗ 0 and $$ \alpha \left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right) $$ α Ξ c 0 → Σ + K ∗ − are 0 . 15 ± 0 . 22(stat . ) ± 0 . 04(syst . ) and − 0 . 52 ± 0 . 30(stat . ) ± 0 . 02(syst . ), respectively, where the uncertainties are statistical followed by systematic.« less
  5. A bstract We present the first measurement of the branching fraction of the singly Cabibbo-suppressed (SCS) decay $$ {\Lambda}_c^{+} $$ Λ c + → pη ′ with η ′ → ηπ + π − , using a data sample corresponding to an integrated luminosity of 981 fb − 1 , collected by the Belle detector at the KEKB e + e − asymmetric-energy collider. A significant $$ {\Lambda}_c^{+} $$ Λ c + → pη ′ signal is observed for the first time with a signal significance of 5.4 σ . The relative branching fraction with respect to the normalization mode $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + is measured to be $$ \frac{\mathcal{B}\left({\Lambda}_c^{+}\to p\eta^{\prime}\right)}{\mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right)}=\left(7.54\pm 1.32\pm 0.73\right)\times {10}^{-3}, $$ B Λ c + → pη ′ B Λ c + → pK − π + = 7.54 ± 1.32 ± 0.73 × 10 − 3 , where the uncertainties are statistical and systematic, respectively. Using the world-average value of $$ \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) $$ B Λ c + → pK − π + = (6 . 28 ± 0 . 32) × 10 − 2 , we obtain $$ \mathcal{B}\left({\Lambda}_c^{+}\to p\eta^{\prime}\right)=\left(4.73\pm 0.82\pm 0.46\pm 0.24\right)\times {10}^{-4}, $$ Bmore »Λ c + → pη ′ = 4.73 ± 0.82 ± 0.46 ± 0.24 × 10 − 4 , where the uncertainties are statistical, systematic, and from $$ \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) $$ B Λ c + → pK − π + , respectively.« less