Directed C−H functionalization has been realized as a complimentary technique to achieve borylation at a distal position of aliphatic amines. Here, we demonstrated the oxidative borylation at the distal δ‐position of aliphatic amines using various borylating agents, a palladium catalyst, and a rightly tuned ligand in the presence of a cheap oxidant. Moreover, an organopalladium δ‐C(sp3)‐H‐activated intermediate has been isolated and crystallographically characterized to get mechanistic insight.
Directed C−H functionalization has been realized as a complimentary technique to achieve borylation at a distal position of aliphatic amines. Here, we demonstrated the oxidative borylation at the distal δ‐position of aliphatic amines using various borylating agents, a palladium catalyst, and a rightly tuned ligand in the presence of a cheap oxidant. Moreover, an organopalladium δ‐C(sp3)‐H‐activated intermediate has been isolated and crystallographically characterized to get mechanistic insight.
more » « less- Award ID(s):
- 2029932
- PAR ID:
- 10273359
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 33
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 18194-18200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Herein, we report the palladium‐catalyzed direct arylation of unactivated aliphatic C−H bonds in free primary amines. This method takes advantage of an
exo ‐imine‐type directing group (DG) that can be generated and removed in situ. A range of unprotected aliphatic amines are suitable substrates, undergoing site‐selective arylation at the γ‐position. Methyl as well as cyclic and acyclic methylene groups can be activated. Furthermore, when aniline‐derived substrates were used, preliminary success with δ‐C−H arylation was achieved. The feasibility of using the DG component in a catalytic fashion was also demonstrated. -
Abstract The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.
-
Abstract The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.
-
Direct installation of the sulfinate group by the functionalization of unreactive aliphatic C–H bonds can provide access to most classes of organosulfur compounds, because of the central position of sulfinates as sulfonyl group linchpins. Despite the importance of the sulfonyl group in synthesis, medicine, and materials science, a direct C(sp 3 )–H sulfination reaction that can convert abundant aliphatic C–H bonds to sulfinates has remained elusive, due to the reactivity of sulfinates that are incompatible with typical oxidation-driven C–H functionalization approaches. We report herein a photoinduced C(sp 3 )–H sulfination reaction that is mediated by sodium metabisulfite and enables access to a variety of sulfinates. The reaction proceeds with high chemoselectivity and moderate to good regioselectivity, affording only monosulfination products and can be used for a solvent-controlled regiodivergent distal C(sp 3 )–H functionalization.more » « less