skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pseudonocardia Symbionts of Fungus-Growing Ants and the Evolution of Defensive Secondary Metabolism
Actinobacteria belonging to the genus Pseudonocardia have evolved a close relationship with multiple species of fungus-growing ants, where these bacteria produce diverse secondary metabolites that protect the ants and their fungal mutualists from disease. Recent research has charted the phylogenetic diversity of this symbiosis, revealing multiple instances where the ants and Pseudonocardia have formed stable relationships in which these bacteria are housed on specific regions of the ant’s cuticle. Parallel chemical and genomic analyses have also revealed that symbiotic Pseudonocardia produce diverse secondary metabolites with antifungal and antibacterial bioactivities, and highlighted the importance of plasmid recombination and horizontal gene transfer for maintaining these symbiotic traits. Here, we propose a multi-level model for the evolution of Pseudonocardia and their secondary metabolites that includes symbiont transmission within and between ant colonies, and the potentially independent movement and diversification of their secondary metabolite biosynthetic genes. Because of their well-studied ecology and experimental tractability, Pseudonocardia symbionts of fungus-growing ants are an especially useful model system to understand the evolution of secondary metabolites, and also comprise a significant source of novel antibiotic and antifungal agents.  more » « less
Award ID(s):
1656475
PAR ID:
10273414
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
11
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cavanaugh, Colleen M. (Ed.)
    ABSTRACT Many fungus-growing ants engage in a defensive symbiosis with antibiotic-producing ectosymbiotic bacteria in the genus Pseudonocardia , which help protect the ants’ fungal mutualist from a specialized mycoparasite, Escovopsis . Here, using germfree ant rearing and experimental pathogen infection treatments, we evaluate if Acromyrmex ants derive higher immunity to the entomopathogenic fungus Metarhizium anisopliae from their Pseudonocardia symbionts. We further examine the ecological dynamics and defensive capacities of Pseudonocardia against M. anisopliae across seven different Acromyrmex species by controlling Pseudonocardia acquisition using ant-nonnative Pseudonocardia switches, in vitro challenges, and in situ mass spectrometry imaging (MSI). We show that Pseudonocardia protects the ants against M. anisopliae across different Acromyrmex species and appears to afford higher protection than metapleural gland (MG) secretions. Although Acromyrmex echinatior ants with nonnative Pseudonocardia symbionts receive protection from M. anisopliae regardless of the strain acquired compared with Pseudonocardia -free conditions, we find significant variation in the degree of protection conferred by different Pseudonocardia strains. Additionally, when ants were reared in Pseudonocardia -free conditions, some species exhibit more susceptibility to M. anisopliae than others, indicating that some ant species depend more on defensive symbionts than others. In vitro challenge experiments indicate that Pseudonocardia reduces Metarhizium conidiospore germination area. Our chemometric analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals that Pseudonocardia -carrying ants produce more chemical signals than Pseudonocardia -free treatments, indicating that Pseudonocardia produces bioactive metabolites on the Acromyrmex cuticle. Our results indicate that Pseudonocardia can serve as a dual-purpose defensive symbiont, conferring increased immunity for both the obligate fungal mutualist and the ants themselves. IMPORTANCE In some plants and animals, beneficial microbes mediate host immune response against pathogens, including by serving as defensive symbionts that produce antimicrobial compounds. Defensive symbionts are known in several insects, including some leaf-cutter ants where antifungal-producing Actinobacteria help protect the fungal mutualist of the ants from specialized mycoparasites. In many defensive symbioses, the extent and specificity of defensive benefits received by the host are poorly understood. Here, using “aposymbiotic” rearing, symbiont switching experiments, and imaging mass spectrometry, we explore the ecological and chemical dynamics of the model defensive symbiosis between Acromyrmex ants and their defensive symbiotic bacterium Pseudonocardia . We show that the defensive symbiont not only protects the fungal crop of Acromyrmex but also provides protection from fungal pathogens that infect the ant workers themselves. Furthermore, we reveal that the increased immunity to pathogen infection differs among strains of defensive symbionts and that the degree of reliance on a defensive symbiont for protection varies across congeneric ant species. Taken together, our results suggest that Acromyrmex -associated Pseudonocardia have evolved broad antimicrobial defenses that promote strong immunity to diverse fungal pathogens within the ancient fungus-growing ant-microbe symbiosis. 
    more » « less
  2. Rudi, Knut (Ed.)
    ABSTRACT Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis . Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1 cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies. IMPORTANCE Many organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect Leucoagaricus spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, Escovopsis . The ants take multiple approaches, including weeding their fungus gardens to remove Escovopsis spores, as well as harboring Pseudonocardia spp., bacteria that produce antifungals that inhibit Escovopsis. In addition, a genus of bacteria commonly found in fungus gardens, Burkholderia , is known to produce secondary metabolites that inhibit Escovopsis spp. In this study, we isolated Burkholderia spp. from fungus-growing ants, assessed the isolates’ ability to inhibit Escovopsis spp., and identified two compounds responsible for inhibition. Our findings suggest that Burkholderia spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite Escovopsis . 
    more » « less
  3. ABSTRACT For their food source, Trachymyrmex septentrionalis ants raise symbiotic fungus gardens that contain bacteria whose functions are poorly understood. Here, we report the genome sequences of eight bacteria isolated from these fungus gardens to better describe the ecology of these strains and their potential to produce secondary metabolites in this niche. 
    more » « less
  4. Evolutionary adaptations for maintaining beneficial microbes are hallmarks of mutualistic evolution. Fungus-farming “attine” ant species have complex cuticular modifications and specialized glands that house and nourish antibiotic-producing Actinobacteria symbionts, which in turn protect their hosts’ fungus gardens from pathogens. Here we reconstruct ant–Actinobacteria evolutionary history across the full range of variation within subtribe Attina by combining dated phylogenomic and ultramorphological analyses. Ancestral-state analyses indicate the ant–Actinobacteria symbiosis arose early in attine-ant evolution, a conclusion consistent with direct observations of Actinobacteria on fossil ants in Oligo-Miocene amber. qPCR indicates that the dominant ant-associated Actinobacteria belong to the genus Pseudonocardia . Tracing the evolutionary trajectories of Pseudonocardia -maintaining mechanisms across attine ants reveals a continuum of adaptations. In Myrmicocrypta species, which retain many ancestral morphological and behavioral traits, Pseudonocardia occur in specific locations on the legs and antennae, unassociated with any specialized structures. In contrast, specialized cuticular structures, including crypts and tubercles, evolved at least three times in derived attine-ant lineages. Conspicuous caste differences in Pseudonocardia -maintaining structures, in which specialized structures are present in worker ants and queens but reduced or lost in males, are consistent with vertical Pseudonocardia transmission. Although the majority of attine ants are associated with Pseudonocardia , there have been multiple losses of bacterial symbionts and bacteria-maintaining structures in different lineages over evolutionary time. The early origin of ant– Pseudonocardia mutualism and the multiple evolutionary convergences on strikingly similar anatomical adaptations for maintaining bacterial symbionts indicate that Pseudonocardia have played a critical role in the evolution of ant fungiculture. 
    more » « less
  5. The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of Escovopsis and closely related genera, symbionts in the gardens of fungus-farming ants. We ask how the gain and loss of various biosynthetic pathways correspond to divergent lifestyles. Long-read sequencing allowed us to define the chromosomal features of representative Escovopsis strains, revealing highly reduced genomes composed of seven to eight chromosomes. The genomes are highly syntenic with macrosynteny decreasing with increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An ancestral state reconstruction analysis of biosynthetic pathways revealed that, while many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56 pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide important insights into the possible mechanisms underlying specificity between these symbionts and their fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts to an ancient agricultural system.Microbial symbionts interact with their hosts and competitors through a remarkable array of secondary metabolites and natural products. Here, we highlight the highly streamlined genomic features of attine-associated fungal symbionts. The genomes of Escovopsis species, as well as species from other symbiont genera, many of which are common with the gardens of fungus-growing ants, are defined by seven chromosomes. Despite a high degree of metabolic conservation, we observe some variation in the symbionts’ potential to produce secondary metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides with attine transitions in agricultural systems, we highlight the likely role of these metabolites in mediating adaptation by a group of highly specialized symbionts. 
    more » « less