skip to main content


Title: Endosidin20‐1 is more potent than endosidin20 in inhibiting plant cellulose biosynthesis and molecular docking analysis of cellulose biosynthesis inhibitors on modeled cellulose synthase structure
SUMMARY

Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs and identified nine active analogs named ES20‐1 to ES20‐9. Among these, endosidin20‐1 (ES20‐1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. At the biochemical level, we demonstrated that ES20‐1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20‐1 likely targets the catalytic site of CESA. However, through molecular docking analysis using a modeled structure of full‐length CESA6, we found that both ES20 and ES20‐1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as isoxaben, C17, and flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are also valuable resources for the development of herbicides. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on a modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20‐1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20‐1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants, and both ES20 and ES20‐1 show an inhibitory effect on bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.

 
more » « less
Award ID(s):
2025437
NSF-PAR ID:
10448553
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
106
Issue:
6
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1605-1624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Endosidin20 (ES20) was recently identified as a cellulose biosynthesis inhibitor (CBI) that targets the catalytic domain of CELLULOSE SYNTHASE 6 (CESA6) and thus inhibits the growth of Arabidopsis thaliana. Here, we characterized the effects of ES20 on the growth of other plant species and found that ES20 is a broad-spectrum plant growth inhibitor. We tested the inhibitory effects of previously characterized CBIs (isoxaben, indaziflam and C17) on the growth of Arabidopsis cesa6 mutants that have reduced sensitivity to ES20. We found that most of these mutants are sensitive to isoxaben, indaziflam and C17, indicating that these tested CBIs have a different mode of action than ES20. ES20 also has a synergistic inhibitory effect on plant growth when jointly applied with other CBIs, further confirming that ES20 has a different mode of action than isoxaben, indaziflam and C17. We demonstrated that plants carrying two missense mutations conferring resistance to ES20 and isoxaben can tolerate the dual inhibitory effects of these CBIs when combined. ES20 inhibits Arabidopsis growth in growth medium and in soil following direct spraying. Therefore, our results pave the way for using ES20 as a broad-spectrum herbicide, and for the use of gene-editing technologies to produce ES20-resistant crop plants. 
    more » « less
  2. Abstract Here, we present a study into the mechanisms of primary cell wall cellulose formation in grasses, using the model cereal grass Brachypodium distachyon. The exon found adjacent to the BdCESA1 glycosyltransferase QXXRW motif was targeted using Targeting Induced Local Lesions in Genomes (TILLING) and sequencing candidate amplicons in multiple parallel reactions (SCAMPRing) leading to the identification of the Bdcesa1S830N allele. Plants carrying this missense mutation exhibited a significant reduction in crystalline cellulose content in tissues that rely on the primary cell wall for biomechanical support. However, Bdcesa1S830N plants failed to exhibit the predicted reduction in plant height. In a mechanism unavailable to eudicotyledons, B. distachyon plants homozygous for the Bdcesa1S830N allele appear to overcome the loss of internode expansion anatomically by increasing the number of nodes along the stem. Stem biomechanics were resultantly compromised in Bdcesa1S830N. The Bdcesa1S830N missense mutation did not interfere with BdCESA1 gene expression. However, molecular dynamic simulations of the CELLULOSE SYNTHASE A (CESA) structure with modelled membrane interactions illustrated that Bdcesa1S830N exhibited structural changes in the translated gene product responsible for reduced cellulose biosynthesis. Molecular dynamic simulations showed that substituting S830N resulted in a stabilizing shift in the flexibility of the class specific region arm of the core catalytic domain of CESA, revealing the importance of this motion to protein function. 
    more » « less
  3. Abstract

    Cellulose, the main component of the plant cell wall, is synthesized by the multimeric cellulose synthase (CESA) complex (CSC). In plant cells, CSCs are assembled in the endoplasmic reticulum or Golgi and transported through the endomembrane system to the plasma membrane (PM). However, how CESA catalytic activity or conserved motifs around the catalytic core influence vesicle trafficking or protein dynamics is not well understood. Here, we used yellow fluorescent protein (YFP)-tagged AtCESA6 and created 18 mutants in key motifs of the catalytic domain to analyze how they affected seedling growth, cellulose biosynthesis, complex formation, and CSC dynamics and trafficking in Arabidopsis thaliana. Seedling growth and cellulose content were reduced by nearly all mutations. Moreover, mutations in most conserved motifs slowed CSC movement in the PM as well as delivery of CSCs to the PM. Interestingly, mutations in the DDG and QXXRW motifs affected YFP-CESA6 abundance in the Golgi. These mutations also perturbed post-Golgi trafficking of CSCs. The 18 mutations were divided into 2 groups based on their phenotypes; we propose that Group I mutations cause CSC trafficking defects, whereas Group II mutations, especially in the QXXRW motif, affect protein folding and/or CSC rosette formation. Collectively, our results demonstrate that the CESA6 catalytic domain is essential for cellulose biosynthesis as well as CSC formation, protein folding and dynamics, and vesicle trafficking.

     
    more » « less
  4. Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate β-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.

     
    more » « less
  5. null (Ed.)
    Abstract Background Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. Scope Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. Conclusion Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies. 
    more » « less