This work investigates three-dimensional simulation of fused filament fabrication using the Cross-WLF model for the non-isothermal and shear thinning behavior of the melt. To realistically simulate the deposition flow, the acceleration, viscosity evolution, and flow front tracking models have been included with the pressure gradient in the deposited road and boundary modeling of the melt and air interface. The results indicate that the non-isothermal and shear thinning behaviors greatly affect the geometry of the deposited roads including the flow front and trailing cross-section shapes. The thermal footprint of the interface between the deposited melt and the substrate is also predicted as a function of the thermal contact conductance. The pressure distribution within the deposited road is also modeled and is found to be not symmetric with respect to the nozzle center-line. Rather, the pressure peak shifts slightly downstream due to redirection of the melt around a stagnation point opposite the nozzle exit. Furthermore, a negative stress is observed downstream the exterior nozzle face associated with the free expansion of the melt as the extruded material climbs and releases from the exterior nozzle face. The developed simulation is verified by comparison with experimental results providing contact pressures ranging from 5 to 132 kPa. 
                        more » 
                        « less   
                    
                            
                            Non-Newtonian modeling of contact pressure in fused filament fabrication
                        
                    
    
            The nozzle pressure was monitored in a fused filament fabrication process for the printing of high impact polystyrene. The contact pressure, defined as the pressure applied by the newly deposited layer onto the previous layer, is experimentally calculated as the difference between the pressure during printing and open discharge at the same volumetric flow rates. An analytical method for estimating the contact pressure, assuming one-dimensional steady isothermal flow, is derived for the Newtonian, power-law, and Cross model dependence of shear rates. A design of experiments was performed to characterize the contact pressure as a function of the road width, road height, and print speed. Statistical analysis of the results suggests that the contribution of the pressure driven flow is about twice that of the drag flow in determining contact pressure, which together describe about 60% of the variation in the observed contact pressure behavior. Modeling of the elastic and normal stresses at the nozzle orifice explains an additional 30% of the observed behavior, indicating that careful rheological modeling is required to successfully predict contact pressure. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914651
- PAR ID:
- 10273575
- Date Published:
- Journal Name:
- Journal of rheology
- Volume:
- 65
- Issue:
- 1
- ISSN:
- 0148-6055
- Page Range / eLocation ID:
- 27-42
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Fused filament fabrication (FFF) is one of the most accessible and flexible additive manufacturing processes. However, it is plagued by consistency issues related to material deposition. The role of compressibility is explored with an instrumented nozzle to relate the observed printing pressure to variations in deposited road widths. Variations in road width are analyzed relative to those predicted using a double domain Tait equation (PVT model) for high impact polystyrene (HIPS). Compressibility was found a critical effect, varying the road widths by up to 50% when accelerating and decelerating. The effect of the speed of transient stress propagation was also investigated but found insignificant.more » « less
- 
            null (Ed.)Compressibility and viscosity of polymer feedstock are critical to their volumetric flow rate, weld strength, and dimensional accuracy in material extrusion additive manufacturing. In this work, the compressibility and viscosity of an acrylonitrile butadiene styrene (ABS) material is characterized with an instrumented hot end design. Experiments are first performed with a blocked nozzle to characterize the compressibility behavior. The results closely emulate the pressure-volume-temperature (PVT) behavior of a characterized generic ABS. Experiments are then performed with an open nozzle over a range of volumetric flow rates and temperatures. The static pressure data is fit to power-law, Ellis, and Cross viscosity models and the dynamic melt pressure data is then used to jointly fit material constitutive models for compressibility and viscosity. The results suggest that the joint fitting substantially improves the fidelity relative to the separately characterized viscosity and compressibility. The implemented methods support material extrusion process simulation and control including real-time identification of process faults such as (1) limited melting capacity of the hot end, (2) skipping (grinding) of the extruder drive gears, (3) low initial nozzle temperature, (4) varying flow rates associated with the intermeshing gear tooth velocity profile, and (5) delays and reduced melt pressures due to drool prior to extrusion. The ability to monitor the printing process for faults in real time, such as that presented in this work, is critical to born qualified parts. Additionally, these approaches can be used to screen new materials and identify optimal processing conditions that avoid these process faults.more » « less
- 
            Abstract Fused deposition modeling (FMD) is considered one of the most common additive manufacturing methods for creating prototypes and small functional parts. Many researchers have studied Polylactic acid (PLA), Polycarbonate (PC), and Acrylonitrile butadiene styrene (ABS) as a material for fused deposition modeling printing. Among them, Polylactic Acid (PLA) is considered one of the most popular thermoplastic materials due to its low cost and biodegradable properties. In this study, silk PLA material was used. In Fused deposition modeling (FMD), the selection of printing parameters plays a pivotal role in determining the overall quality and integrity of the 3D-printed products. These parameters significantly influence the quality and strength of 3-D printed products. This study investigates the mechanical properties of silk-PLA printed specimens under different printing conditions, such as layer thickness, nozzle temperature, and print speed. All the tensile specimens were tested using ASTM D638 to characterize Young’s modulus and ultimate tensile strength. The thickness of the layers of tensile specimens was set to 0.1 mm, 0.15 mm, and 0.2 mm. The temperatures of the nozzle used during printing varied from 200°C, 210°C, and 220°C, whereas print speeds of 100 mm/s, 120 mm/s, and 140 mm/s were considered. The other printing parameters were kept consistent for all specimens. The result indicates tensile strength generally increases with increasing temperature of the nozzle, up to 220°C; however, a decline was observed in the average Young’s modulus value when the thickness of the layer increased from 0.10 mm to 0.20 mm. According to the results of the ANOVA analysis, the interaction between layer thickness, nozzle temperature, and printing speed significantly affects the tensile strength and Young’s modulus of Silk-PLA. This study reveals that nozzle temperature is the most critical parameter regarding the ultimate tensile strength and Young’s modulus, providing crucial insights for optimizing 3D printing parameters.more » « less
- 
            Die-swell is a flow effect that occurs in polymer extrusion whereby the material experiences rapid stress and dimensional changes upon exiting the nozzle orifice. Material extrusion additive manufacturing is no exception, and this effect influences the final dimensions of the printed road and imparts residual stresses. Die-swell is measured via a custom test cell that uses optical and infrared cameras and an instrumented hot end with an infeed pressure load cell. The instrumented hot end is mounted onto a stationary extruder above a conveyor to simulate printhead translation at steady state conditions for a wide range of volumetric flow rates. Investigated factors for an acrylonitrile butadiene styrene (ABS) filament include volumetric flow rate (0.9 mm3/s to 10.0 mm3/s), hot end temperature setpoint (200–250 ◦C), and nozzle orifice diameter (0.25–0.60 mm). The die-swell increases as a function of the volumetric flow rate and shear stress but decreases as a function of the hot end temperature setpoint and nozzle orifice diameter. For modelling, an implementation of the Tanner model for die swell displays good agreement with experimental results. The model also demonstrates that the same proportionality constant, k_N1 , which relates first normal stress difference to shear stress, can be used for different nozzle orifice diameters with the same length to diameter ratios, and that kN1 increases as a function of hot end temperature setpoint as expected with the rheological concept of time temperature superposition.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    