skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automation and control of laser wakefield accelerators using Bayesian optimization
Abstract Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.  more » « less
Award ID(s):
1804463
PAR ID:
10273602
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pilat, Fulvia; Fischer, Wolfram; Saethre, Robert; Anisimov, Petr; Andrian, Ivan (Ed.)
    A large challenge with Plasma Wakefield Acceleration lies in creating a plasma with a profile and length that properly match the electron beam. Using a laser-ionized plasma source provides control in creating an appropriate plasma density ramp. Additionally, using a laser-ionized plasma allows for an accelerator to run at a higher repetition rate. At the Facility for Advanced Accelerator Experimental Tests, at SLAC National Accelerator Laboratory, we ionize hydrogen gas with a 225 mJ, 50 fs, 800 nm laser pulse that passes through an axicon lens, imparting a conical phase on the pulse that produces a focal spot with an intensity distribution described radially by a Bessel function. This paper overviews the diagnostic tests used to characterize and optimize the focal spot along the meter-long focus. In particular, we observe how wavefront aberrations in the laser pulse impact the peak intensity of the focal spot. Furthermore, we discuss the impact of nonlinear effects caused by a 6 mm, CaF2 vacuum window in the laser beam line. 
    more » « less
  2. Abstract Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space–time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space–time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse. 
    more » « less
  3. In this work, evolution of parameters of nanosecond repetitively pulsed (NRP) discharges in pin-to-pin configuration in air was studied during the transient stage of initial 20 discharge pulses. Gas and plasma parameters in the discharge gap were measured using coherent microwave scattering, optical emission spectroscopy, and laser Rayleigh scattering for NRP discharges at repetition frequencies of 1, 10, and 100 kHz. Memory effects (when perturbations induced by the previous discharge pulse would not decay fully until the subsequent pulse) were detected for the repetition frequencies of 10 and 100 kHz. For 10 kHz NRP discharge, the discharge parameters experienced significant change after the first pulse and continued to substantially fluctuate between subsequent pulses due to rapid evolution of gas density and temperature during the 100  μs inter-pulse time caused by intense redistribution of the flow field in the gap on that time scale. For 100 kHz NRP discharge, the discharge pulse parameters reached a new steady-state at about five pulses after initiation. This new steady-state was associated with well-reproducible parameters between the discharge pulses and substantial reduction in breakdown voltage, discharge pulse energy, and electron number density in comparison to the first discharge pulse. For repetition frequencies 1–100 kHz considered in this work, the memory effects can be likely attributed to the reduction in gas number density and increase in the gas temperature that cannot fully recover to ambient conditions before subsequent discharge pulses. 
    more » « less
  4. We present a modular quasi-optical pulse slicer designed for use at terahertz (THz) frequencies. Given a quasi-cw input, the two outputs of a module are (1) a pulse with programmable duration and (2) its complement. The quasi-optical design incorporates a laser-driven silicon switch at Brewster's angle to the incoming THz beam, which limits undesired reflections before the switch is activated such that THz power is only transmitted when the switch is “on.” An “off” switch ensures that no power is leaked after the pulse and that the switching profile is sharp. The slicer's small footprint (0.048×0.072×0.162 m3) and small insertion loss (1.2 dB at 320 GHz) as well as high switching efficiency (∼70%) allows modules to be stacked to create multiple pulses. The output channel that is not used for experiments can be used for concurrent analysis of beam parameters. Stacking modular assemblies will enable more complex sequences of kW-level pulses than are currently achievable for applications including free-electron-laser or gyrotron-powered pulsed electron spin resonance at high magnetic fields. 
    more » « less
  5. In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by resonantly driving the betatron oscillations of the electrons in the plasma wave. The traditional particle-in-cell (PIC) algorithm, although often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and magnetic fields. Furthermore, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse, which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals that the most energetic electrons receive comparable energy from DLA and LWFA. 
    more » « less