- Award ID(s):
- 1656450
- NSF-PAR ID:
- 10273609
- Date Published:
- Journal Name:
- American Journal of Physiology-Heart and Circulatory Physiology
- Volume:
- 320
- Issue:
- 5
- ISSN:
- 0363-6135
- Page Range / eLocation ID:
- H1822 to H1835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Force production by actin–myosin cross-bridges in cardiac muscle is regulated by thin-filament proteins and sarcomere length (SL) throughout the heartbeat. Prior work has shown that myosin regulatory light chain (RLC), which binds to the neck of myosin heavy chain, increases cardiac contractility when phosphorylated. We recently showed that cross-bridge kinetics slow with increasing SLs, and that RLC phosphorylation amplifies this effect, using skinned rat myocardial strips predominantly composed of the faster α-cardiac myosin heavy chain isoform. In the present study, to assess how RLC phosphorylation influences length-dependent myosin function as myosin motor speed varies, we used a propylthiouracil (PTU) diet to induce >95% expression of the slower β-myosin heavy chain isoform in rat cardiac ventricles. We measured the effect of RLC phosphorylation on Ca 2+ -activated isometric contraction and myosin cross-bridge kinetics (via stochastic length perturbation analysis) in skinned rat papillary muscle strips at 1.9- and 2.2-µm SL. Maximum tension and Ca 2+ sensitivity increased with SL, and RLC phosphorylation augmented this response at 2.2-µm SL. Subtle increases in viscoelastic myocardial stiffness occurred with RLC phosphorylation at 2.2-µm SL, but not at 1.9-µm SL, thereby suggesting that RLC phosphorylation increases β-myosin heavy chain binding or stiffness at longer SLs. The cross-bridge detachment rate slowed as SL increased, providing a potential mechanism for prolonged cross-bridge attachment to augment length-dependent activation of contraction at longer SLs. Length-dependent slowing of β-myosin heavy chain detachment rate was not affected by RLC phosphorylation. Together with our previous studies, these data suggest that both α- and β-myosin heavy chain isoforms show a length-dependent activation response and prolonged myosin attachment as SL increases in rat myocardial strips, and that RLC phosphorylation augments length-dependent activation at longer SLs. In comparing cardiac isoforms, however, we found that β-myosin heavy chain consistently showed greater length-dependent sensitivity than α-myosin heavy chain. Our work suggests that RLC phosphorylation is a vital contributor to the regulation of myocardial contractility in both cardiac myosin heavy chain isoforms.more » « less
-
Background and Purpose Heart failure can reflect impaired contractile function at the myofilament level. In healthy hearts, myofilaments become more sensitive to Ca2+as cells are stretched. This represents a fundamental property of the myocardium that contributes to the Frank–Starling response, although the molecular mechanisms underlying the effect remain unclear. Mavacamten, which binds to myosin, is under investigation as a potential therapy for heart disease. We investigated how mavacamten affects the sarcomere‐length dependence of Ca2+‐sensitive isometric contraction to determine how mavacamten might modulate the Frank–Starling mechanism.
Experimental Approach Multicellular preparations from the left ventricular‐free wall of hearts from organ donors were chemically permeabilized and Ca2+activated in the presence or absence of 0.5‐μM mavacamten at 1.9 or 2.3‐μm sarcomere length (37°C). Isometric force and frequency‐dependent viscoelastic myocardial stiffness measurements were made.
Key Results At both sarcomere lengths, mavacamten reduced maximal force and Ca2+sensitivity of contraction. In the presence and absence of mavacamten, Ca2+sensitivity of force increased as sarcomere length increased. This suggests that the length‐dependent activation response was maintained in human myocardium, even though mavacamten reduced Ca2+sensitivity. There were subtle effects of mavacamten reducing force values under relaxed conditions (pCa 8.0), as well as slowing myosin cross‐bridge recruitment and speeding cross‐bridge detachment under maximally activated conditions (pCa 4.5).
Conclusion and Implications Mavacamten did not eliminate sarcomere length‐dependent increases in the Ca2+sensitivity of contraction in myocardial strips from organ donors at physiological temperature. Drugs that modulate myofilament function may be useful therapies for cardiomyopathies.
-
null (Ed.)Morbidity and mortality associated with heart disease is a growing threat to the global population, and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca 2+ sensitivity of contraction for both genotypes, but this reduction in pCa 50 was nearly twice as large for WT-RLC versus N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed up myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca 2+ sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM. NEW & NOTEWORTHY Mavacamten is a pharmaceutical that binds to myosin, and it is under investigation as a therapy for some forms of heart disease. We show that mavacamten reduces isometric tension and Ca 2+ sensitivity of contraction in skinned myocardial strips from a mouse model of hypertrophic cardiomyopathy that expresses the N47K mutation in cardiac myosin regulatory light chain. Mavacamten reduces contractility by decreasing strong cross-bridge binding, partially due to faster cross-bridge nucleotide handling rates that speed up myosin detachment.more » « less
-
The force response of cardiac muscle undergoing a quick stretch is conventionally interpreted to represent stretching of attached myosin crossbridges (phase 1) and detachment of these stretched crossbridges at an exponential rate (phase 2), followed by crossbridges reattaching in increased numbers due to an enhanced activation of the thin filament (phases 3 and 4). We propose that, at least in mammalian cardiac muscle, phase 2 instead represents an enhanced detachment rate of myosin crossbridges due to stretch, phase 3 represents the reattachment of those same crossbridges, and phase 4 is a passive-like viscoelastic response with power-law relaxation. To test this idea, we developed a two-state model of crossbridge attachment and detachment. Unitary force was assigned when a crossbridge was attached, and an elastic force was generated when an attached crossbridge was displaced. Attachment rate, f(x), was spatially distributed with a total magnitude f0. Detachment rate was modeled as g(x) = g0+ g1x, where g0 is a constant and g1 indicates sensitivity to displacement. The analytical solution suggested that the exponential decay rate of phase 2 represents (f0 + g0) and the exponential rise rate of phase 3 represents g0. The depth of the nadir between phases 2 and 3 is proportional to g1. We prepared skinned mouse myocardium and applied a 1% stretch under varying concentrations of inorganic phosphate (Pi). The resulting force responses fitted the analytical solution well. The interpretations of phases 2 and 3 were consistent with lower f0 and higher g0 with increasing Pi. This novel scheme of interpreting the force response to a quick stretch does not require enhanced thin-filament activation and suggests that the myosin detachment rate is sensitive to stretch. Furthermore, the enhanced detachment rate is likely not due to the typical detachment mechanism following MgATP binding, but rather before MgADP release, and may involve reversal of the myosin power stroke.
-
null (Ed.)Muscle contraction results from force-generating cross-bridge interactions between myosin and actin. Cross-bridge cycling kinetics underlie fundamental contractile properties, such as active force production and energy utilization. Factors that influence cross-bridge kinetics at the molecular level propagate through the sarcomeres, cells and tissue to modulate whole-muscle function. Conversely, movement and changes in the muscle length can influence cross-bridge kinetics on the molecular level. Reduced, single-molecule and single-fibre experiments have shown that increasing the strain on cross-bridges may slow their cycling rate and prolong their attachment duration. However, whether these strain-dependent cycling mechanisms persist in the intact muscle tissue, which encompasses more complex organization and passive elements, remains unclear. To investigate this multi-scale relationship, we adapted traditional step-stretch protocols for use with mouse soleus muscle during isometric tetanic contractions, enabling novel estimates of length-dependent cross-bridge kinetics in the intact skeletal muscle. Compared to rates at the optimal muscle length ( L o ), we found that cross-bridge detachment rates increased by approximately 20% at 90% of L o (shorter) and decreased by approximately 20% at 110% of L o (longer). These data indicate that cross-bridge kinetics vary with whole-muscle length during intact, isometric contraction, which could intrinsically modulate force generation and energetics, and suggests a multi-scale feedback pathway between whole-muscle function and cross-bridge activity.more » « less