skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Open questions: how do engineered nanomaterials affect our cells?
Abstract Our cells have evolutionarily conserved mechanisms that battle foreign and toxic materials to maintain cellular homeostasis and viability. How do these cellular machineries respond to engineered nanomaterials?  more » « less
Award ID(s):
1805317
PAR ID:
10273996
Author(s) / Creator(s):
;
Date Published:
Journal Name:
BMC Biology
Volume:
18
Issue:
1
ISSN:
1741-7007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evolutionary processes have transformed simple cellular life into a great diversity of forms, ranging from the ubiquitous eukaryotic cell design to the more specific cellular forms of spirochetes, cyanobacteria, ciliates, heliozoans, amoeba, and many others. The cellular traits that constitute these forms require an evolutionary explanation. Ultimately, the persistence of a cellular trait depends on its net contribution to fitness, a quantitative measure. Independent of any positive effects, a cellular trait exhibits a baseline energetic cost that needs to be accounted for when quantitatively examining its net fitness effect. Here, we explore how the energetic burden introduced by a cellular trait quantitatively affects cellular fitness, describe methods for determining cell energy budgets, summarize the costs of cellular traits across the tree of life, and examine how the fitness impacts of these energetic costs compare to other evolutionary forces and trait benefits. 
    more » « less
  2. The cellular network offers a ubiquitous emergency call service with its pervasive coverage. In the United States, it can be consumed by dialing 911 for cellular users, and the emergency call is forwarded to the public safety answer point (PSAP), which handles emergency service requests. According to regulatory authority requirements [1,2,3] for cellular emergency services, anonymous user equipment (UE) is allowed to access them without a SIM (Subscriber Identity Module) card, a valid mobile subscription, or a roaming agreement with the visited cellular network. Such support of the cellular emergency services requires different operations from conventional cellular services, thereby increasing the attack surface of the cellular infrastructure. 
    more » « less
  3. Offloading cellular traffic to WiFi networks plays an important role in alleviating the increasing burden on cellular networks. However, excessive traffic offloading brings severe packet collisions into a WiFi network due to its contention-based medium access scheme, which significantly reduces the WiFi network’s throughput. In this paper, we propose DAO, a device-to-device (D2D) communications assisted traffic offloading scheme to improve the amount of traffic offloaded from cellular to WiFi in integrated cellular and WiFi networks. Specifically, in an integrated cellular-WiFi network, the cellular network exploits D2D communications in licensed cellular bands to aggregate traffic from cellular users before offloading it to the WiFi network to reduce the number of contending users in WiFi access. The traffic offloading process in DAO is formulated as an optimization problem that jointly takes into account the activations of aggregation nodes (ANs) and the connections between ANs and offloading users to maximize the offloaded traffic while guaranteeing the long-term data rates required by the offloading users. Extensive simulation results reveal the significant performance gain achieved by DAO over the existing schemes. 
    more » « less
  4. Cellular networks that offer ubiquitous connectivity have been the major medium for delivering emergency services. In the U.S., mobile users can dial an emergency call with 911 for emergency uses in cellular networks, and the call can be forwarded to public safety answer points (PSAPs), which deal with emergency service requests. According to regulatory authority requirements for the cellular emergency services, anonymous user equipment (UE), which does not have a SIM (Subscriber Identity Module) card or a valid mobile subscription, is allowed to access them. Such support of emergency services for anonymous UEs requires different operations from conventional cellular services, and can therefore increase the attack surface of the cellular infrastructure. In this work, we are thus motivated to study the insecurity of the cellular emergency services and then discover four security vulnerabilities from them. Threateningly, they can be exploited to launch not only free data service attacks against cellular carriers, but also data DoS/overcharge and denial of cellular emergency service (DoCES) attacks against mobile users. All vulnerabilities and attacks have been validated experimentally as practical security issues in the networks of three major U.S. carriers. We finally propose and prototype standard-compliant remedies to mitigate the vulnerabilities. 
    more » « less
  5. Cell signalling and communication are fundamental to living cellular communities. For the past two decades, there has been continuous development of bottom-up engineered synthetic cells, which have become more and more similar to their natural counterparts. However, we are only scratching the surface with the development of synthetic cellular communities and their integration into natural tissues. Here, we review different intercellular communication mechanisms engineered for synthetic cells and classify them based on their resemblance to natural cell signalling mechanisms: autocrine, paracrine, and juxtacrine. In particular, we highlight recent advances in molecular tools for intercellular communication designs and discuss potential applications of engineering synthetic cellular communities and synthetic cell-natural cell communication. With further advances in this area, synthetic cellular communities will be powerful tools for understanding and manipulating cellular functions, thus unlocking potential applications in biosensing, cellular reprogramming, and sustainability. 
    more » « less