skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Persistence of aerially-sprayed naled in coastal sediments
Aerial sprays of the organophosphate pesticide, naled, were intensified over beach areas during the summer of 2016 to control the locally-acquired Zika outbreak in the continental U.S. Concerns were raised in beach frequented areas about contaminated sediments. The aim of this study was to evaluate the persistence and levels of naled and its byproduct, dichlorvos, in sediments obtained from the affected areas. Laboratory experiments were designed to simulate the effect of various natural conditions on the decomposition of naled in three sediment types (beach sand, marl, and calcinated beach sand). The three sediment samples were also exposed to field aerial sprays. After 30 min of exposure, more dichlorvos was detected in the sediments than naled, with 33 to 43% of the molar concentration initially applied as either naled or dichlorvos. Under dark conditions, trace levels of naled were observed after 24 h on sediments. Higher temperature accelerated the natural decomposition of both naled and dichlorvos in sediments. The half-life of naled ranged from 3 to 5 h at 22.5 °C and ranged from 1 to 3 h at 30 °C. Expedited decomposition of naled was observed under sunlight conditions with a half-life of naled of 20 min. In the field, only dichlorvos was detected in the sediment samples at concentrations between 0.0011 and 0.0028 μmol/g 1 h after aerial sprays. This data can be used towards a risk assessment that evaluates exposures to naled and dichlorvos through beach sands impacted by aerial spray activities.  more » « less
Award ID(s):
1709939
PAR ID:
10274126
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Science of the total environment
Volume:
794
Issue:
10
ISSN:
1879-1026
Page Range / eLocation ID:
148701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. no editor. (Ed.)
    The Tijuana River Watershed encompasses 1750 square miles of territory in both Mexico and the United States, culminating at the National EstuarineResearch Reserve. While this area comprises one of the largest undisturbed wetlands in the state, it is one of the most polluted rivers in SouthernCalifornia, draining raw sewage and nonpoint source pollution. Despite extensive research, microplastic pollution along the beaches has not been explored. The objective of this study is to determine how the abundance and morphology of microplastic pollution in beach sediments vary with distance along the littoral cell from the Tijuana River outfall. Twenty samples were collected at 10 sites that span from the Tijuana River outfall to Mission Beach, San Diego. They are characterized as outfall sites, low-visitation beaches near the outfall, and high-visitation beaches further from the outfall. Solutions of 100ml sediment and 400ml hyper-saline solution were mixed and settled for 16 hours before being processed using a vacuum filtration system in a laminar fl ow hood. The microplastics (MP)were counted and classified using light microscopy. Laboratory practices to reduce laboratory contamination were employed and analytical blanks were run for every 3 samples. MPs ranged from 1 to 199/100ml sediment, of which approximately 91% were fibers. The greatest MP abundance occurred at the river outfall sites, but recovery rates were highly variable, and the analytical blanks ranged from 3-63/100ml sediment. The results oft his study suggest that microplastic distribution in sandy beach sediments is patchy but higher near the Tijuana River Outfall, and that future studies should report analytical blanks and employ methods to reduce contamination. Understanding the relationship between watersheds and microplastic distributions may inspire policy change on water quality protections in watersheds. 
    more » « less
  2. Abstract During a storm, as the beach profile is impacted by increased wave forcing and rapidly changing water levels, sand berms may help mitigate erosion of the backshore. However, the mechanics of berm morphodynamics have not been fully described. In this study, 26 trials were conducted in a large wave flume to explore the response of a near‐prototype berm to scaled storm conditions. Sensors were used to quantify hydrodynamics, sheet flow dynamics, and berm evolution. Results indicate that berm overtopping and offshore sediment transport were key processes causing berm erosion. During the morphological evolution of the beach profile, two sand bars were formed offshore that attenuated subsequent wave energy. The landward extent of that energy was confined to the seaward foreshore, inhibiting inundation of the backshore. Net offshore‐directed transport was dominant when infragravity motions increased in the swash zone. Conversely, the influence of incident‐band motions on sediment transport was relatively greater in the inner‐surf zone. Near‐bed flow velocities and sheet flow layer thicknesses were larger in the swash zone than in the inner‐surf zone. This paper also provides a valuable analysis between morphology‐estimated total sediment transport rates and rates derived from in situ measurements. Sheet flow dynamics dominated foreshore cross‐shore sediment processes, constituting the largest portion of the total sediment transport load throughout the berm erosion. 
    more » « less
  3. Quantifying trace levels of microplastics in complex environmental media remains a challenge. In this study, an approach combining field collection of samples from different depths, sample size fractionation, and plastic quantification via pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) was employed to identify and quantify microplastics at two public beaches along the northeast coast of the U.S. (Salisbury beach, MA and Hampton beach, NH). A simple sampling tool was used to collect beach sand from depth intervals of 0–5 cm and 5–10 cm, respectively. The samples were sieved to give three size fractions: coarse (>1.2 mm), intermediate (100 μm–1.2 mm), and fine (1.2 μm–100 μm) particles. Following density separation and wet peroxide oxidation, a low-temperature solvent extraction protocol involving 2-chlorophenol was used to extract polyester (PET), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). The extract was analyzed using Py-GC–MS for the respective polymers, while the solid residue was pyrolyzed separately for polyethylene (PE) and polypropylene (PP). The one-step solvent extraction method significantly simplified the sample matrix and improved the sensitivity of analysis. Among the samples, PET was detected in greater quantities in the fine fraction than in the intermediate size fraction, and PET fine particles were located predominantly in the surface sand. Similar to PET, PS was detected at higher mass concentrations in the fine particles in most samples. These results underscore the importance of beach environment for plastic fragmentation, where a combination of factors including UV irradiation, mechanical abrasion, and water exposure promote plastic breakdown. Surface accumulation of fine plastic particles may also be attributed to transport of microplastics through wind and tides. The proposed sample treatment and analysis methods may allow sensitive and quantitative measurements of size or depth related distribution patterns of microplastics in complex environmental media. 
    more » « less
  4. Abstract Erosive beach scarps influence beach vulnerability, yet their formation remains challenging to predict. In this study, a 1:2.5 scale laboratory experiment was used to study the subsurface hydrodynamics of a beach dune during an erosive event. Pressure and moisture sensors buried within the dune were used both to monitor the water table and to examine vertical pressure gradients in the upper 0.3 m of sand as the slope of the upper beach developed into a scarp. Concurrently, a line‐scan lidar tracked swash bores and monitored erosion and accretion patterns along a single cross‐shore transect throughout the experiment. As wave conditions intensified, a discontinuity in the slope of the dune formed; the discontinuity grew steeper and progressed landward at the same rate as theR2%runup extent until it was a fully formed scarp with a vertical face. Within the upper 0.15 m of the partially saturated sand, upward pore pressure gradients were detected during backwash, influencing the effective weight of sand and potentially contributing to beachface erosion. The magnitude and frequency of the upward pressure gradients increased with deeper swash depths and with frequency of wave interaction, and decreased with depth into the sand. A simple conceptual model for scarp formation is proposed that incorporates observations of upward‐directed pressure gradients from this study while providing a reference for future studies seeking to integrate additional swash zone sediment transport processes that may impact scarp development. 
    more » « less
  5. Beach ridges constructed by pluvial Lake Clover in Elko County, Nevada during the Late Pleistocene were investigated with ground-penetrating radar (GPR). The primary objective was to document the internal architecture of these shorelines and to evaluate whether they were constructed during lake rise or fall. GPR data were collected with a ground-coupled 400-Mhz antenna and SIR-3000 controller. To constrain the morphology of the ridges, detailed topographic surveys were collected with a Topcon GTS-235W total station referenced to a second class 0 vertical survey point. GPR transects crossed the beach ridge built by Lake Clover at its highstand of 1725 m, along with seven other ridges down to the lowest beach at 1712 m. An average dielectric permittivity of 5.0, typical for dry sand and gravel, was calculated from GPR surveys in the vicinity of hand-excavations that encountered prominent stratigraphic discontinuities at known depths. Assuming this value, consistent radar signals were returned to a depth of ~3 m. Beach ridges are resolvable as ~90 to 150-cm thick stratified packages of gravelly sand overlying a prominent lakeward-dipping reflector, interpreted as the pre-lake land surface. Many ridges contain a package of sediment resembling a buried berm at their core, typically offset in a landward direction from the geomorphic crest of the beach ridge. Sequences of lakeward-dipping reflectors are resolvable beneath the beach face of all ridges. No evidence was observed to indicate that beach ridges were submerged by higher water levels after their formation. Instead, the GPR data are consistent with a model of sequential ridge formation during a monotonic lake regression. 
    more » « less