skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parameterization of Unstable Manifolds for DDEs: Formal Series Solutions and Validated Error Bounds
This paper studies the local unstable manifold attached to an equilibrium solution of a system of delay differential equations (DDEs). Two main results are developed. The first is a general method for computing the formal Taylor series coefficients of a function parameterizing the unstable manifold. We derive linear systems of equations whose solutions are the Taylor coefficients, describe explicit formulas for assembling the linear equations for DDEs with polynomial nonlinearities. We also discuss a scheme for transforming non-polynomial DDEs into polynomial ones by appending auxiliary equations. The second main result is an a-posteriori theorem which—when combined with deliberate control of rounding errors— leads to mathematically rigorous computer assisted convergence results and error bounds for the truncated series. Our approach is based on the parameterization method for invariant manifolds and requires some mild non-resonance conditions between the unstable eigenvalues  more » « less
Award ID(s):
1813501
PAR ID:
10274131
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Dynamics and Differential Equations
ISSN:
1040-7294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trefftz schemes are high-order Galerkin methods whose discrete spaces are made of elementwise exact solutions of the underlying partial differential equation (PDE). Trefftz basis functions can be easily computed for many PDEs that are linear, homogeneous and have piecewise-constant coefficients. However, if the equation has variable coefficients, exact solutions are generally unavailable. Quasi-Trefftz methods overcome this limitation relying on elementwise ‘approximate solutions’ of the PDE, in the sense of Taylor polynomials. We define polynomial quasi-Trefftz spaces for general linear PDEs with smooth coefficients and source term, describe their approximation properties and, under a nondegeneracy condition, provide a simple algorithm to compute a basis. We then focus on a quasi-Trefftz DG method for variable-coefficient elliptic diffusion–advection–reaction problems, showing stability and high-order convergence of the scheme. The main advantage over standard DG schemes is the higher accuracy for comparable numbers of degrees of freedom. For nonhomogeneous problems with piecewise-smooth source term we propose to construct a local quasi-Trefftz particular solution and then solve for the difference. Numerical experiments in two and three space dimensions show the excellent properties of the method both in diffusion-dominated and advection-dominated problems. 
    more » « less
  2. Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such inputoutput analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinitedimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinitedimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity. 
    more » « less
  3. null (Ed.)
    Abstract This paper presents the Eshelby’s tensor of a polygonal inclusion with a polynomial eigenstrain, which can provide an elastic solution to an arbitrary, convex inclusion with a continuously distributed eigenstrain by the Taylor series approximation. The Eshelby’s tensor for plane strain problem is derived from the fundamental solution of isotropic Green’s function with the Hadmard regularization, which is composed of the integrals of the derivatives of the harmonic and biharmonic potentials over the source domain. Using the Green’s theorem, they are converted to two line (contour) integrals over the polygonal cross section. This paper evaluates them by direct analytical integrals. Following Mura’s work, this paper formulates the method to derive linear, quadratic, and higher order of the Eshelby’s tensor in the polynomial form for arbitrary, convex polygonal shapes of inclusions. Numerical case studies were performed to verify the analytic results with the original Eshelby’s solution for a uniform eigenstrain in an ellipsoidal domain. It is of significance to consider higher order terms of eigenstrain for the polygon-shape inclusion problem because the eigenstrain distribution is generally non-uniform when Eshelby’s equivalent inclusion method is used. The stress disturbance due to a triangle particle in an infinite domain is demonstrated by comparison with the results of the finite element method (FEM). The present solution paves the way to accurately simulate the particle-particle, partial-boundary interactions of polygon-shape particles. 
    more » « less
  4. This paper presents a scalable tensor-based approach to computing controllability and observability-type energy functions for nonlinear dynamical systems with polynomial drift and linear input and output maps. Using Kronecker product polynomial expansions, we convert the Hamilton- Jacobi-Bellman partial differential equations for the energy functions into a series of algebraic equations for the coefficients of the energy functions. We derive the specific tensor structure that arises from the Kronecker product representation and analyze the computational complexity to efficiently solve these equations. The convergence and scalability of the proposed energy function computation approach is demonstrated on a nonlinear reaction-diffusion model with cubic drift nonlinearity, for which we compute degree 3 energy function approximations in n = 1023 dimensions and degree 4 energy function approximations in n = 127 dimensions. 
    more » « less
  5. An optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic (LQ, for short) optimal control problems for mean-field stochastic differential equations. Open-loop solvability of the problem is characterized as the solvability of a system of linear coupled forward-backward stochastic differential equations (FBSDE, for short) with operator coefficients, together with a convexity condition for the cost functional. Under proper conditions, the well-posedness of such an FBSDE, which leads to the existence of an open-loop optimal control, is established. Finally, as applications of our main results, a general mean-field LQ control problem and a concrete mean-variance portfolio selection problem in the open-loop case are solved. 
    more » « less