skip to main content


Title: Comparing fruiting phenology across two historical datasets: Thoreau’s observations and herbarium specimens
Abstract Background and Aims Fruiting remains under-represented in long-term phenology records, relative to leaf and flower phenology. Herbarium specimens and historical field notes can fill this gap, but selecting and synthesizing these records for modern-day comparison requires an understanding of whether different historical data sources contain similar information, and whether similar, but not equivalent, fruiting metrics are comparable with one another. Methods For 67 fleshy-fruited plant species, we compared observations of fruiting phenology made by Henry David Thoreau in Concord, Massachusetts (1850s), with phenology data gathered from herbarium specimens collected across New England (mid-1800s to 2000s). To identify whether fruiting times and the order of fruiting among species are similar between datasets, we compared dates of first, peak and last observed fruiting (recorded by Thoreau), and earliest, mean and latest specimen (collected from herbarium records), as well as fruiting durations. Key Results On average, earliest herbarium specimen dates were earlier than first fruiting dates observed by Thoreau; mean specimen dates were similar to Thoreau’s peak fruiting dates; latest specimen dates were later than Thoreau’s last fruiting dates; and durations of fruiting captured by herbarium specimens were longer than durations of fruiting observed by Thoreau. All metrics of fruiting phenology except duration were significantly, positively correlated within (r: 0.69–0.88) and between (r: 0.59–0.85) datasets. Conclusions Strong correlations in fruiting phenology between Thoreau’s observations and data from herbaria suggest that field and herbarium methods capture similar broad-scale phenological information, including relative fruiting times among plant species in New England. Differences in the timing of first, last and duration of fruiting suggest that historical datasets collected with different methods, scales and metrics may not be comparable when exact timing is important. Researchers should strongly consider matching methodology when selecting historical records of fruiting phenology for present-day comparisons.  more » « less
Award ID(s):
1735087
NSF-PAR ID:
10274653
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annals of Botany
ISSN:
0305-7364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal Impact Statement

    Networks of digitized herbarium records are rich resources for understanding plant responses to climate change. While the climate is warming globally, some localities are experiencing climate cooling, the effects of which are poorly understood. Our herbarium‐based study of a geographically restricted species shows that the timing of reproduction can shift earlier as the climate becomes cooler and wetter. Local variation in climate change may be a key factor driving the high variability of changes observed in plant reproduction and climate cooling should be considered along with other global change drivers. This will help enable accurate predictions for the successful management of climate change effects.

    Summary

    Plant phenological responses to global warming are well studied. However, while many locations are experiencing increased temperatures, some locations are experiencing climate cooling. Little work has been conducted to understand plant phenological responses to cooling trends, much less the combined effects of cooling and other factors, such as changing precipitation. Furthermore, studies based on herbarium specimens have been instrumental in demonstrating plant responses to global warming; but to our knowledge, herbarium records have not been used to investigate responses to cooling.

    We collected data from 98 years of herbarium records to evaluate whether the reproductive phenology (flowering/fruiting) of an annual mustard, cedar gladecress (Leavenworthia stylosa), has changed as the climate has become cooler and wetter in central Tennessee, USA. Additionally, we conducted two field experiments to assess reproductive consequences of different flowering times.

    Over the last century, gladecress reproductive phenology has shifted 2.1 days earlier per decade, concurrent with wetter conditions during germination and cooler conditions during reproduction. Field experiments showed that plants with extremely early and moderately early flowering had equivalent reproduction, but these plants had greater reproduction than intermediate‐ and late‐flowering plants.

    Counter to expectations from global warming studies, our work demonstrates that climate cooling and greater rainfall can result in earlier plant reproductive phenology, potentially due to asymmetric selection for early flowering. Future studies may need to consider climate cooling along with other global change factors to fully explain changes in plant phenology. Our understanding of plant responses to climate cooling can be enhanced through additional herbarium‐based research.

     
    more » « less
  2. Plant phenology has been shifting dramatically in response to climate change, a shift that may have significant and widespread ecological consequences. Of particular concern are tropical biomes, which represent the most biodiverse and imperiled regions of the world. However, compared to temperate floras, we know little about phenological responses of tropical plants because long-term observational datasets from the tropics are sparse. Herbarium specimens have greatly increased our phenological knowledge in temperate regions, but similar data have been underutilized in the tropics and their suitability for this purpose has not been broadly validated. Here, we compare phenological estimates derived from field observational data (i.e., plot surveys) and herbarium specimens at various spatial and taxonomic scales to determine whether specimens can provide accurate estimations of reproductive timing and its spatial variation. Here we demonstrate that phenological estimates from field observations and herbarium specimens coincide well. Fewer than 5% of the species exhibited significant differences between flowering periods inferred from field observations versus specimens regardless of spatial aggregation. In contrast to studies based on field records, herbarium specimens sampled much larger geographic and climatic ranges, as has been documented previously for temperate plants, and effectively captured phenological responses across varied environments. Herbarium specimens are verified to be a vital resource for closing the gap in our phenological knowledge of tropical systems. Tropical plant reproductive phenology inferred from herbarium records are widely congruent with field observations, suggesting that they can (and should) be used to investigate phenological variation and their associated environmental cues more broadly across tropical biomes. 
    more » « less
  3. Summary

    Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited.

    Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering).

    Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions.

    Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.

     
    more » « less
  4. Abstract

    In recent decades, the final frost dates of winter have advanced throughout North America, and many angiosperm taxa have simultaneously advanced their flowering times as the climate has warmed. Phenological advancement may reduce plant fitness, as flowering prior to the final frost date of the winter/spring transition may damage flower buds or open flowers, limiting fruit and seed production. The risk of floral exposure to frost in the recent past and in the future, however, also depends on whether the last day of winter frost is advancing more rapidly, or less rapidly, than the date of onset of flowering in response to climate warming. This study presents the first continental‐scale assessment of recent changes in frost risk to floral tissues, using digital records of 475,694 herbarium specimens representing 1,653 angiosperm species collected across North America from 1920 to 2015. For most species, among sites from which they have been collected, dates of last frost have advanced much more rapidly than flowering dates. As a result, frost risk has declined in 66% of sampled species. Moreover, exotic species consistently exhibit lower frost risk than native species, primarily because the former occupy warmer habitats where the annual frost‐free period begins earlier. While reducing the probability of exposure to frost has clear benefits for the survival of flower buds and flowers, such phenological advancement may disrupt other ecological processes across North America, including pollination, herbivory, and disease transmission.

     
    more » « less
  5. Premise of the Study

    Herbarium specimens are increasingly used as records of plant flowering phenology. However, most herbarium‐based studies on plant phenology focus on taxa from temperate regions. Here, we explore flowering phenologic responses to climate in the subtropical plant genusProtea(Proteaceae), an iconic group of plants that flower year‐round and are endemic to subtropical Africa.

    Methods

    We present a novel, circular sliding window approach to investigate phenological patterns developed for species with year‐round flowering. We employ our method to evaluate the extent to which site‐to‐site and year‐to‐year variation in temperature and precipitation affect flowering dates using a database of 1727 herbarium records of 25Proteaspecies. We also explore phylogenetic conservatism in flowering phenology.

    Results

    We show that herbarium data combined with our sliding window approach successfully captured independently reported flowering phenology patterns (r= 0.93). Both warmer sites and warmer years were associated with earlier flowering of 3–5 days/°C, whereas precipitation variation had no significant effect on flowering phenology. Although species vary widely in phenological responsiveness, responses are phylogenetically conserved, with closely related species tending to shift flowering similarly with increasing temperature.

    Discussion

    Our results point to climate‐responsive phenology for this important plant genus and indicate that the subtropical, aseasonally flowering genusProteahas temperature‐driven flowering responses that are remarkably similar to those of better‐studied northern temperate plant species, suggesting a generality across biomes that has not been described elsewhere.

     
    more » « less