skip to main content


Title: Understanding the Early Stages of Nickel Sulfide Nanocluster Growth: Isolation of Ni 3 , Ni 4 , Ni 5 , and Ni 8 Intermediates
Abstract

Addition of sub‐stoichiometric quantities of PEt3and diphenyl disulfide to a solution of [Ni(1,5‐cod)2] generates a mixture of [Ni3(SPh)4(PEt3)3] (1), unreacted [Ni(1,5‐cod)2], and [(1,5‐cod)Ni(PEt3)2], according to1H and31P{1H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex1converts into [Ni4(S)(Ph)(SPh)3(PEt3)3] (2), via formal addition of a “Ni(0)” equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni‐bound phenyl ligand and the μ3‐sulfide ligand. Upon gentle heating, complex2converts into a mixture of [Ni5(S)2(SPh)2(PEt3)5] (3) and [Ni8(S)5(PEt3)7] (4), via further addition of “Ni(0)” equivalents, in combination with a series of C–S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of14in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster.

 
more » « less
Award ID(s):
1059097
NSF-PAR ID:
10450012
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
27
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reaction of [Ni(1,5-cod) 2 ] (30 equiv.) with PEt 3 (46 equiv.) and S 8 (1.9 equiv.) in toluene, followed by heating at 115 °C for 16 h, results in the formation of the atomically precise nanocluster (APNC), [Ni 30 S 16 (PEt 3 ) 11 ] (1), in 14% isolated yield. Complex 1 represents the largest open-shell Ni APNC yet isolated. In the solid state, 1 features a compact “metal-like” core indicative of a high degree of Ni–Ni bonding. Additionally, SQUID magnetometry suggests that 1 possesses a manifold of closely-spaced electronic states near the HOMO–LUMO gap. In situ monitoring by ESI-MS and 31 P{ 1 H} NMR spectroscopy reveal that 1 forms via the intermediacy of smaller APNCs, including [Ni 8 S 5 (PEt 3 ) 7 ] and [Ni 26 S 14 (PEt 3 ) 10 ] (2). The latter APNC was also characterized by X-ray crystallography and features a nearly identical core structure to that found in 1. This work demonstrates that large APNCs with a high degree of metal–metal bonding are isolable for nickel, and not just the noble metals. 
    more » « less
  2. We present three heterobimetallic complexes containing an isostructural nickel center and a lutetium ion in varying coordination environments. The bidentate iPr2PCH2NHPh and nonadentate (iPr2PCH2NHAr)3tacn ligands were used to prepare the Lu metalloligands, Lu( i Pr 2 PCH 2 NPh) 3 ( 1 ) and Lu{( i Pr 2 PCH 2 NAr) 3 tacn} ( 2 ), respectively. Reaction of Ni(COD) 2 (where COD is 1,5-cyclooctadiene) and 1 afforded NiLu( i Pr 2 PCH 2 NPh) 3 ( 3 ), with a Lu coordination number (CN) of 4 and a Ni–Lu distance, d (Ni–Lu), of 2.4644(2) Å. Complex 3 can further bind THF to form 3-THF , increasing both the Lu CN to 5 and d (Ni–Lu) to 2.5989(4) Å. On the other hand, incorporation of Ni(0) into 2 provides NiLu{( i Pr 2 PCH 2 NAr) 3 tacn} ( 4 ), in which the Lu coordination environment is more saturated (CN = 6), and the d (Ni–Lu) is substantially elongated at 2.9771(5) Å. Cyclic voltammetry of the three Ni–Lu complexes shows an overall ∼410 mV shift in the Ni(0/I) redox couple, suggesting tunability of the Ni electronics across the series. Computational studies reveal polarized bonding interactions between the Ni 3d z2 (major) and the Lu 5d z2 (minor) orbitals, where the percentage of Lu character increases in the order: 4 (6.0% Lu 5d z2 ) < 3-THF (8.5%) < 3 (9.3%). All three Ni–Lu complexes bind H 2 at low temperatures (−30 to −80 °C) and are competent catalysts for styrene hydrogenation. Complex 3 outperforms 4 with a four-fold faster rate. Additionally, adding increasing THF equivalents to 3 , which would favor build-up of 3-THF , decreases the rate. We propose that altering the coordination sphere of the Lu support can influence the resulting properties and catalytic activity of the active Ni(0) metal center. 
    more » « less
  3. Abstract

    Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications.

     
    more » « less
  4. Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N2→ 2NH3reduction involves the reductive elimination (re) of H2from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H2for each N2reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. (i) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[e/H+] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. (ii) These calculations indicate an important role of sulfide hemilability in the overall conversion ofE0to a diazene-level intermediate. (iii) Perhaps most importantly, they explain (iiia) how the enzyme mechanistically couples exothermic H2formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutralre/oxidative-addition equilibrium, (iiib) while preventing the “futile” generation of two H2without N2reduction: hydrideregenerates an H2complex, but H2is only lost when displaced by N2, to form an end-on N2complex that proceeds to a diazene-level intermediate.

     
    more » « less
  5. Abstract

    The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] (2) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] (1) with 2.3 equivalents of KC8in THF, in the presence of 2.2.2‐cryptand, at −78 °C. Complex2reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] (4) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of2was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).

     
    more » « less