skip to main content

Title: Understanding the Early Stages of Nickel Sulfide Nanocluster Growth: Isolation of Ni 3 , Ni 4 , Ni 5 , and Ni 8 Intermediates
Authors:
; ;
Award ID(s):
1059097
Publication Date:
NSF-PAR ID:
10274681
Journal Name:
Small
Volume:
17
Issue:
27
Page Range or eLocation-ID:
2003133
ISSN:
1613-6810
Sponsoring Org:
National Science Foundation
More Like this
  1. Over recent years, great efforts have been made to push the limits of layered transition metal oxides for secondary battery cathodes. This is particularly true for overall capacity, which has reached a terminal theoretical value for many materials. One avenue for increasing this capacity during charging is the intercalation of anions post cation deintercalation. This work investigates the charging mechanism of the P3-Na0.5Ni0.25 Mn0.75O2 cathode material through cation (Na) deintercalation and anion (ClO4) intercalation by means of density functional theory. The calculations corroborate experimental findings of increased capacity (135 mAh g-1 to 180 mAh g-1) through the intercalation of anions. However, this work demonstrates that a process of simultaneous cation deintercalation/anion intercalation is the primary charging mechanism, with charge compensation reactions of Ni2+/Ni4+ and O2-/O- occurring within the cathode material. To elucidate this simultaneous process, a novel method for computationally determining anion voltage in which one must consider full electrolyte interactions is proposed. Based on the results, it is believed that a simultaneous cation deintercalation/anion intercalation mechanism provides one potential avenue for the discovery of the next generation of secondary batteries.
  2. High-resolution X-ray diffraction experiments, theoretical calculations and atom-specific X-ray absorption experiments were used to investigate two nickel complexes, (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO [complex (1)] and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] [complex (2)]. Combining the techniques of nickel K - and sulfur K -edge X-ray absorption spectroscopy with high-resolution X-ray charge density modeling, together with theoretical calculations, the actual oxidation states of the central Ni atoms in these two complexes are investigated. Ni ions in two complexes are clearly in different oxidation states: the Ni ion of complex (1) is formally Ni II ; that of complex (2) should be formally Ni III , yet it is best described as a combination of Ni 2+ and Ni 3+ , due to the involvement of the non-innocent ligand in the Ni— L bond. A detailed description of Ni—S bond character (σ,π) is presented.