Capture of Electrochemically Generated Fleeting Carbazole Radical Cations and Elucidation of Carbazole Dimerization Mechanism by Mass Spectrometry
- Award ID(s):
- 1915878
- PAR ID:
- 10275252
- Date Published:
- Journal Name:
- Analytical Chemistry
- Volume:
- 92
- Issue:
- 23
- ISSN:
- 0003-2700
- Page Range / eLocation ID:
- 15291 to 15296
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Supercapacitor energy storage devices are well suited to meet the rigorous demands of future portable consumer electronics (PCEs) due to their high energy and power densities (i.e., longer battery-life and rapid charging, respectively) and superior operational lifetimes (10 times greater than lithium-ion batteries). To date, research efforts have been narrowly focused on improving the specific capacitance of these materials; however, emerging technologies are increasingly demanding competitive performance with regards to other criteria, including scalability of fabrication and electrochemical stability. In this regard, we developed a polyaniline (PANI) derivative that contains a carbazole unit copolymerized with 2,5-dimethyl-p-phenylenediamine (Cbz-PANI-1) and determined its optoelectronic properties, electrical conductivity, processability, and electrochemical stability. Importantly, the polymer exhibits good solubility in various solvents, which enables the use of scalable spray-coating and drop-casting methods to fabricate electrodes. Cbz-PANI-1 was used to fabricate electrodes for supercapacitor devices that exhibits a maximum areal capacitance of 64.8 mF cm–2 and specific capacitance of 319 F g–1 at a current density of 0.2 mA cm–2. Moreover, the electrode demonstrates excellent cyclic stability (≈ 83% of capacitance retention) over 1000 CV cycles. Additionally, we demonstrate the charge storage performance of Cbz-PANI-1 in a symmetrical supercapacitor device, which also exhibits excellent cyclic stability (≈ 91% of capacitance retention) over 1000 charge–discharge cycles.more » « less
-
null (Ed.)We have recently reported the role of methoxy substitutions on the optoelectronic properties of two new series of carbazole–bridge–carbazole compounds (bridge = carbazole, phenyl) by varying the number of methoxy groups from 0–4 per carbazole unit. Here, we report the effect of molecular shape (linear versus V-shape), number and linking topology of the methoxy-substitutions on the hole-transport properties of these molecules. The results indicate a delicate balance between the positive and negative effects depending on the substitution topology and the nature of the bridge. It is found that, unlike recent findings from our groups, the methoxy substituents in these compounds reduce the hole mobilities due to the enhanced molecular polarity, a detrimental effect which can be importantly reduced by designing linear D–A–D architectures. The differences in the geometries of the new compounds and their hole transport properties as a function of the nature of the bridge, number of methoxy groups and the substitution topology are explained in terms of the different symmetry of HOMO and HOMO−1 of the carbazole units, which interact very differently with the methoxy substituents and the bridge (carbazole or phenyl). The pros and cons of using- versus -avoiding methoxy groups in order to improve the hole mobility of the new compounds are discussed with regard to the targeted application.more » « less
An official website of the United States government

