- Award ID(s):
- 1937019
- NSF-PAR ID:
- 10275315
- Date Published:
- Journal Name:
- 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)
- Page Range / eLocation ID:
- 61 to 66
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Convolutional Neural Network (CNN) models and many accessible large-scale public visual datasets have brought lots of research work to a remarkable new stage. Benefited from well-trained CNN models, small training datasets can learn comprehensive features by utilizing the preliminary features from transfer learning. However, the performance is not guaranteed when taking these features to construct a new model, as the differences always exist between the source and target domains. In this paper, we propose to build an Evolution Programming-based framework to address various challenges. This framework automates both the feature learning and model building processes. It first identifies the most valuable features from pre-trained models and then constructs a suitable model to understand the characteristic features for different tasks. Each model differs in numerous ways. Overall, the experimental results effectively reach optimal solutions, demonstrating that a time-consuming task could also be conducted by an automated process that exceeds the human ability.more » « less
-
Abstract Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images.
-
In this paper, we present a novel terrain classifica- tion framework for large-scale remote sensing images. A well- performing multi-scale superpixel tessellation based segmentation approach is employed to generate homogeneous and irregularly shaped regions, and a transfer learning technique is sequentially deployed to derive representative deep features by utilizing suc- cessful pre-trained convolutional neural network (CNN) models. This design is aimed to overcome the big problem of lacking available ground-truth data and to increase the generalization power of the multi-pixel descriptor. In the subsequent classification step, we train a fast and robust support vector machine (SVM) to assign the pixel-level labels. Its maximum-margin property can be easily combined with a graph Laplacian propagation approach. Moreover, we analyze the advantages of applying a feature selection technique to the deep CNN features which are extracted by transfer learning. In the experiments, we evaluate the whole framework based on different geographical types. Compared with other region-based classification methods, the results show that our framework can obtain state-of-the-art performance w.r.t. both classification accuracy and computational efficiency.more » « less
-
Abstract Pollen identification is necessary for several subfields of geology, ecology, and evolutionary biology. However, the existing methods for pollen identification are laborious, time-consuming, and require highly skilled scientists. Therefore, there is a pressing need for an automated and accurate system for pollen identification, which can be beneficial for both basic research and applied issues such as identifying airborne allergens. In this study, we propose a deep learning (DL) approach to classify pollen grains in the Great Basin Desert, Nevada, USA. Our dataset consisted of 10,000 images of 40 pollen species. To mitigate the limitations imposed by the small volume of our training dataset, we conducted an in-depth comparative analysis of numerous pre-trained Convolutional Neural Network (CNN) architectures utilizing transfer learning methodologies. Simultaneously, we developed and incorporated an innovative CNN model, serving to augment our exploration and optimization of data modeling strategies. We applied different architectures of well-known pre-trained deep CNN models, including AlexNet, VGG-16, MobileNet-V2, ResNet (18, 34, and 50, 101), ResNeSt (50, 101), SE-ResNeXt, and Vision Transformer (ViT), to uncover the most promising modeling approach for the classification of pollen grains in the Great Basin. To evaluate the performance of the pre-trained deep CNN models, we measured accuracy, precision, F1-Score, and recall. Our results showed that the ResNeSt-110 model achieved the best performance, with an accuracy of 97.24%, precision of 97.89%, F1-Score of 96.86%, and recall of 97.13%. Our results also revealed that transfer learning models can deliver better and faster image classification results compared to traditional CNN models built from scratch. The proposed method can potentially benefit various fields that rely on efficient pollen identification. This study demonstrates that DL approaches can improve the accuracy and efficiency of pollen identification, and it provides a foundation for further research in the field.
-
Introduction Computer vision and deep learning (DL) techniques have succeeded in a wide range of diverse fields. Recently, these techniques have been successfully deployed in plant science applications to address food security, productivity, and environmental sustainability problems for a growing global population. However, training these DL models often necessitates the large-scale manual annotation of data which frequently becomes a tedious and time-and-resource- intensive process. Recent advances in self-supervised learning (SSL) methods have proven instrumental in overcoming these obstacles, using purely unlabeled datasets to pre-train DL models.
Methods Here, we implement the popular self-supervised contrastive learning methods of NNCLR Nearest neighbor Contrastive Learning of visual Representations) and SimCLR (Simple framework for Contrastive Learning of visual Representations) for the classification of spatial orientation and segmentation of embryos of maize kernels. Maize kernels are imaged using a commercial high-throughput imaging system. This image data is often used in multiple downstream applications across both production and breeding applications, for instance, sorting for oil content based on segmenting and quantifying the scutellum’s size and for classifying haploid and diploid kernels.
Results and discussion We show that in both classification and segmentation problems, SSL techniques outperform their purely supervised transfer learning-based counterparts and are significantly more annotation efficient. Additionally, we show that a single SSL pre-trained model can be efficiently finetuned for both classification and segmentation, indicating good transferability across multiple downstream applications. Segmentation models with SSL-pretrained backbones produce DICE similarity coefficients of 0.81, higher than the 0.78 and 0.73 of those with ImageNet-pretrained and randomly initialized backbones, respectively. We observe that finetuning classification and segmentation models on as little as 1% annotation produces competitive results. These results show SSL provides a meaningful step forward in data efficiency with agricultural deep learning and computer vision.