skip to main content


Title: Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ring‐Opening Polymerizations
Abstract

Access to block copolymers from monomers that do not polymerize via a common mechanism requires initiation from a multifunctional species that allows orthogonal polymerization chemistries. We disclose a strategy to provide well‐defined polyacrylamido‐b‐polyether block copolymers by a one‐pot combination of photoiniferter polymerization and organocatalytic ring‐opening polymerization (ROP) using a hydroxy‐functionalized trithiocarbonate photoiniferter as the dual initiator at ambient temperature. Our results reveal good compatibility between the two polymerization systems and highlight that they can be performed in arbitrary order or simultaneously with good retention of the thiocarbonylthio functionality. We also demonstrate selective temporal control over the photoiniferter polymerization during concurrent ROP. We harnessed the efficiency of combining these polymerization systems to provide tailor‐made block copolymers from chemically distinct monomers.

 
more » « less
PAR ID:
10275377
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
133
Issue:
34
ISSN:
0044-8249
Page Range / eLocation ID:
p. 18685-18689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Access to block copolymers from monomers that do not polymerize via a common mechanism requires initiation from a multifunctional species that allows orthogonal polymerization chemistries. We disclose a strategy to provide well‐defined polyacrylamido‐b‐polyether block copolymers by a one‐pot combination of photoiniferter polymerization and organocatalytic ring‐opening polymerization (ROP) using a hydroxy‐functionalized trithiocarbonate photoiniferter as the dual initiator at ambient temperature. Our results reveal good compatibility between the two polymerization systems and highlight that they can be performed in arbitrary order or simultaneously with good retention of the thiocarbonylthio functionality. We also demonstrate selective temporal control over the photoiniferter polymerization during concurrent ROP. We harnessed the efficiency of combining these polymerization systems to provide tailor‐made block copolymers from chemically distinct monomers.

     
    more » « less
  2. Abstract

    This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.

     
    more » « less
  3. Abstract

    This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.

     
    more » « less
  4. Abstract

    RecentlyO‐carboxyanhydrides (OCAs) have emerged as a class of viable monomers which can undergo ring‐opening polymerization (ROP) to prepare poly(α‐hydroxyalkanoic acid) with functional groups that are typically difficult to achieve by ROP of lactones. Organocatalysts for the ROP of OCAs, such as dimethylaminopyridine (DMAP), may induce undesired epimerization of the α‐carbon atom in polyesters resulting in the loss of isotacticity. Herein, we report the use of (BDI‐IE)Zn(OCH(CH3)COOCH3) ((BDI)Zn‐1, (BDI‐IE)=2‐((2,6‐diethylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐2‐pentene), for the controlled ROP of various OCAs without epimerization. Both homopolymers and block copolymers with controlled molecular weights, narrow molecular weight distributions, and isotactic backbones can be readily synthesized. (BDI)Zn‐1 also enables controlled copolymerization of OCAs and lactide, facilitating the synthesis of block copolymers potentially useful for various biomedical applications. Preliminary mechanistic studies suggest that the monomer/dimer equilibrium of the zinc catalyst influences the ROP of OCAs, with the monomeric (BDI)Zn‐1 possessing superior catalytic activity for the initiation of ROP in comparison to the dimeric (BDI)Zn complex.

     
    more » « less
  5. Abstract

    Polymerization‐induced self‐assembly (PISA) has emerged as a scalable one‐pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l‐lactide)‐b‐poly(ethylene glycol) BCP nanoparticles coined ring‐opening polymerization (ROP)‐induced crystallization‐driven self‐assembly (ROPI‐CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N‐dimethyl acrylamide)‐b‐poly(l)‐lactide BCP nanoparticles by ROPI‐CDSA, utilizing a two‐step, one‐pot approach. A dual‐functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido‐based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI‐CDSA BCPs and provides readily accessible nanorods made with biocompatible materials.

     
    more » « less