- Publication Date:
- NSF-PAR ID:
- 10275441
- Journal Name:
- Nature Sustainability
- ISSN:
- 2398-9629
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, andmore »
-
Disinfection is an essential process for both potable water and wastewater treatment plants. However, disinfection byproducts (DBPs) like trihalomethanes (THMs), haloacetonitriles (HANs), and nitrosamines (NOAs) are formed when organic matter precursors react with disinfectants such as chlorine, chloramine, and ozone. Formation of DBPs is strongly associated with the type of water source, type of disinfectant, and organic matter concentration, which can have seasonal variation. In this study, water samples were collected from 20 different intra-watershed locations, which included urban runoff (with and without the influence of unsheltered homeless populations), wastewater effluent discharges, and a large, terminal reservoir that serves as the local drinking water source. Samples were collected on dry and rainy days, which represent seasonal samples. DBP formation potential (FP) tests were conducted at consistent pH, contact time, and temperature. THMs, NOAs, and HANs were analyzed by gas chromatography-mass spectrometry (GC-MS). The FP tests performed on these water samples revealed that chlorine formed the highest THM concentrations, while THM concentrations were low for the ozone FP test as expected. Chloramine produced the greatest HAN concentrations, with dichloroacetonitrile representing the highest concentration. With respect to sample type, more DBPs were formed at the non-wastewater-impacted runoff sites as compared to themore »
-
Abstract Increasing trends in base cations, pH, and salinity of freshwaters have been documented in US streams over 50 years. These patterns, collectively known as freshwater salinization syndrome (FSS), are driven by multiple processes, including applications of road salt and human-accelerated weathering of impervious surfaces, reductions in acid rain, and other anthropogenic legacies of change. FSS mobilizes chemical cocktails of distinct elemental mixtures via ion exchange, and other biogeochemical processes. We analyzed impacts of FSS on streamwater chemistry across five urban watersheds in the Baltimore-Washington, USA metropolitan region. Through combined grab-sampling and high-frequency monitoring by USGS sensors, regression relationships were developed among specific conductance and major ion and trace metal concentrations. These linear relationships were statistically significant in most of the urban streams (e.g.
R 2= 0.62 and 0.43 for Mn and Cu, respectively), and showed that specific conductance could be used as a proxy to predict concentrations of major ions and trace metals. Major ions and trace metals analyzed via linear regression and principal component analysis showed co-mobilization (i.e. correlations among combinations of specific conductance (SC), Mn, Cu, Sr2+, and all base cations during certain times of year and hydrologic conditions). Co-mobilization of metals and base cations was strongest during peakmore » -
Abstract A changing climate and often unregulated water extractions have exposed over 2 billion people to water stress worldwide. While water managers have explored a portfolio of options to reduce this stress, supply augmentation through reuse of treated municipal wastewater is becoming increasingly attractive. Wastewater treatment plants protect water quality and prevent sewage from contaminating waterways. Increasingly, this resource is utilized for numerous human (e.g., irrigation, drinking water, groundwater recharge) and conservation (e.g., stream and river recharge) needs in water stressed regions. To understand the role treated municipal wastewater plays in impacting conservation objectives we identified the intersection of wastewater treatment plant locations and occurrences of threatened and endangered (T&E) species in California and compared the permitted contribution of effluent to baseflow quantities of the receiving waterbody to assess the degree to which changes in effluent could affect instream waterbodies. We found a positive correlation between the presence of treatment plants and T&E species in California watersheds—a quarter of species have 100% of their range in watersheds with at least one treatment plant. This correlation is greatest for species associated with terraces and riparian habitat, followed by aquatic habitat and aquatic emergent vegetation. One‐third of watersheds in our analysis canmore »
-
Abstract Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors:
human activities ,geology ,flowpaths ,climate , andtime . (1)Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2)Geology drives rates of erosion, weathering, ion exchange, and acidification‐alkalinization. (3)Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4)Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5)Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems‐level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.