skip to main content


Title: Full-Chip Power Density and Thermal Map Characterization for Commercial Microprocessors under Heat Sink Cooling
In this article, we address the problem of accurate full-chip power and thermal map estimation for commercial off-the-shelf multi-core processors. Processors operating with heat sink cooling remains a challenging problem due to the difficulty in direct measurement. We first propose an accurate full-chip steady-state power density map estimation method for commercial multi-core microprocessors. The new method consists of a few steps. First, 2D spatial Laplace operation is performed on the measured thermal maps (images) without heat sink to obtain the so-called "raw power maps". Then, a novel scheme is developed to generate the true power density maps from the raw power density maps. The new approach is based on thermal measurements of the processor with back-side cooling using an advanced infrared (IR) thermal imaging system. FEM thermal model constructed in COMSOL Multiphysics is used to validate the estimated power density maps and thermal conductivity. Later, this work creates a high-fidelity FEM thermal model with heat sink and reconstructs the full-chip thermal maps while the heat sink is on. Ensuring that power maps are similar under back cooling and heat sink cooling settings, the reconstructed thermal maps are verified by the matching between the on-chip thermal sensor readings and the corresponding elements of thermal maps. Experiments on an Intel i7-8650U 4-core processor with back cooling shows 96\% similarity (2D correlation) between the measured thermal maps and the thermal maps reconstructed from the estimated power maps, with 1.3$\rm ^\circ$C average absolute error. Under heat sink cooling, the average absolute error is 2.2$\rm ^\circ$C over a 56$\rm ^\circ$C temperature range and about 3.9\% error between the computed and the real thermal maps at the sensor locations. Furthermore, the proposed power map estimation method achieves higher resolution and at least 100$\times$ speedup than a recently proposed state-of-art Blind Power Identification method.  more » « less
Award ID(s):
1854276 2113928
NSF-PAR ID:
10275551
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
ISSN:
0278-0070
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we propose a novel approach for the real-time estimation of chip-level spatial power maps for commercial Google Coral M.2 TPU chips based on a machine-learning technique for the first time. The new method can enable the development of more robust runtime power and thermal control schemes to take advantage of spatial power information such as hot spots that are otherwise not available. Different from the existing commercial multi-core processors in which real-time performance-related utilization information is available, the TPU from Google does not have such information. To mitigate this problem, we propose to use features that are related to the workloads of running different deep neural networks (DNN) such as the hyperparameters of DNN and TPU resource information generated by the TPU compiler. The new approach involves the offline acquisition of accurate spatial and temporal temperature maps captured from an external infrared thermal imaging camera under nominal working conditions of a chip. To build the dynamic power density map model, we apply generative adversarial networks (GAN) based on the workload-related features. Our study shows that the estimated total powers match the manufacturer's total power measurements extremely well. Experimental results further show that the predictions of power maps are quite accurate, with the RMSE of only 4.98\rm mW/mm^2, or 2.6\% of the full-scale error. The speed of deploying the proposed approach on an Intel Core i7-10710U is as fast as 6.9ms, which is suitable for real-time estimation. 
    more » « less
  2. In this paper, we propose a novel transient full-chip thermal map estimation method for multi-core commercial CPU based on the data-driven generative adversarial learning method. We treat the thermal modeling problem as an image-generation problem using the generative neural networks. In stead of using traditional functional unit powers as input, the new models are directly based on the measurable real-time high level chip utilizations and thermal sensor information of commercial chips without any assumption of additional physical sensors requirement. The resulting thermal map estimation method, called {\it ThermGAN} can provide tool-accurate full-chip {\it transient} thermal maps from the given performance monitor traces of commercial off-the-shelf multi-core processors. In our work, both generator and discriminator are composed of simple convolutional layers with Wasserstein distance as loss function. ThermGAN can provide the transient and real-time thermal map without using any historical data for training and inferences, which is contrast with a recent RNN-based thermal map estimation method in which historical data is needed. Experimental results show the trained model is very accurate in thermal estimation with an average RMSE of 0.47C, namely, 0.63\% of the full-scale error. Our data further show that the speed of the model is faster than 7.5ms per inference, which is two orders of magnitude faster than the traditional finite element based thermal analysis. Furthermore, the new method is about 4x more accurate than recently proposed LSTM-based thermal map estimation method and has faster inference speed. It also achieves about 2x accuracy with much less computational cost than a state-of-the-art pre-silicon based estimation method. 
    more » « less
  3. This work proposes a new dynamic thermal and reliability management framework via task mapping and migration to improve thermal performance and reliability of commercial multi-core processors considering workload-dependent thermal hot spot stress. The new method is motivated by the observation that different workloads activate different spatial power and thermal hot spots within each core of processors. Existing run-time thermal management, which is based on on-chip location-fixed thermal sensor information, can lead to suboptimal management solutions as the temperatures provided by those sensors may not be the true hot spots. The new method, called Hot-Trim, utilizes a machine learning-based approach to characterize the power density hot spots across each core, then a new task mapping/migration scheme is developed based on the hot spot stresses. Compared to existing works, the new approach is the first to optimize VLSI reliabilities by exploring workload-dependent power hot spots. The advantages of the proposed method over the Linux baseline task mapping and the temperature-based mapping method are demonstrated and validated on real commercial chips. Experiments on a real Intel Core i7 quad-core processor executing PARSEC-3.0 and SPLASH-2 benchmarks show that, compared to the existing Linux scheduler, core and hot spot temperature can be lowered by 1.15 to 1.31C. In addition, Hot-Trim can improve the chip's EM, NBTI and HCI related reliability by 30.2%, 7.0% and 31.1% respectively compared to Linux baseline without any performance degradation. Furthermore, it improves EM and HCI related reliability by 29.6% and 19.6% respectively, and at the same time even further reduces the temperature by half a degree compared to the conventional temperature-based mapping technique. 
    more » « less
  4. More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in.  1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance. 
    more » « less
  5. Thermal limitations play a significant role in modern integrated chips (ICs) design and performance. 3D integrated chip (3DIC) makes the thermal problem even worse due to a high density of transistors and heat dissipation bottlenecks within the stack-up. These issues exacerbate the need for quick thermal solutions throughout the design flow. This paper presents a generative approach for modeling the power to heat dissipation for a 3DIC. This approach focuses on a single layer in a stack and shows that, given the power map, the model can generate the resultant heat for the bulk. It shows two approaches, one straightforward approach where the model only uses the power map and the other where it learns the additional parameters through random vectors. The first approach recovers the temperature maps with 1.2 C° or a root-mean-squared error (RMSE) of 0.31 over the images with pixel values ranging from -1 to 1. The second approach performs better, with the RMSE decreasing to 0.082 in a 0 to 1 range. For any result, the model inference takes less than 100 millisecond for any given power map. These results show that the generative approach has speed advantages over traditional solvers while enabling results with reasonable accuracy for 3DIC, opening the door for thermally aware floorplanning. 
    more » « less