skip to main content

Title: Advances in dynamically controlled catalytic reaction engineering
Transient reaction modulation has found its place in many branches of chemical reaction engineering over the past hundred years. Historically, catalytic reactions have been dominated by the impulse to reduce spatial and temporal perturbations in favor of steady, static systems due to their ease of operation and scalability. Transient reactor operation, however, has seen remarkable growth in the past few decades, where new operating regimes are being revealed to enhance catalytic reaction rates beyond the statically achievable limits classically described by thermodynamics and the Sabatier principle. These theoretical and experimental studies suggest that there exists a resonant frequency which coincides with its catalytic turnover that can be exploited and amplified for a given reaction to overcome classical barriers. This review discusses the evolution of thought from thermostatic (equilibrium), to thermodynamic (dynamic equilibrium), and finally dynamic (non-equilibrium) catalysis. Natural and forced dynamic oscillations are explored with periodic reactor operation of catalytic systems that modulate energetics and local concentrations through a multitude of approaches, and the challenges to unlock this new class of catalytic reaction engineering is discussed.
Authors:
;
Award ID(s):
1944619 2029359
Publication Date:
NSF-PAR ID:
10275598
Journal Name:
Reaction Chemistry & Engineering
Volume:
5
Issue:
12
Page Range or eLocation-ID:
2185 to 2203
ISSN:
2058-9883
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by the increasing demand for flexible and sustainable routes of ammonia (NH3) production, the electrochemical nitrogen (N2) and nitrate reduction reaction (NRR and NO3RR) have attracted intense research interest in the past few years1,2. Compared to the centralized Haber-Bosch process that operates at elevated temperature and pressure, the electrochemical pathway features mild operating conditions but high input energy density, allowing for distributed and on-site generation of NH3 with water as the proton source, thereby reducing the transportation and storage costs of NH3 and H23. Besides N2 which is highly abundant in the atmosphere, nitrate-N exists widely in agricultural andmore »industrial wastewaters, and its presence has raised severe concerns due to its known impacts on the environment and human health4,5. In this regard, NO3RR provides a promising strategy of simultaneously removing the harmful nitrate-N and generating NH3 as a useful product from those wastewater streams. While research activities on both NRR and NO3RR are blooming with substantial progress in the field of electrocatalysis, some major challenges remain unnoticed or unresolved so far. Due to the wide existence of reactive N-containing species in laboratory environments, the source of NH3 in NRR measurements is sometimes elusive and requires rigorous examination by control experiments with costly 15N26,7. On the other hand, while the electro-reduction of nitrate is much more facile, additional costs arising from the enrichment and purification of nitrate in contaminated waste resources have challenged the practical feasibility of NO3RR both technically and economically2. In this talk, we will present our latest research progress as part of the solutions to these challenges in state-of-the-art NRR and NO3RR studies, from the perspective of reactor design. By taking advantage of the prior developments in 15N2 control experiments, here we suggest an improved 15N2 circulation system that is effective and affordable for NRR research, allowing for more accurate and economized quantitative assessment of NH3 origins, so that false positives and subtle catalytic activities can be identified more reliably. For NO3RR, we developed a compact reactor system for rapid and efficient electrochemical conversion of nitrate to NH3 from real nitrate-containing waste sources, accompanied by the concurrent separation and enrichment of the produced NH3 in a trapping solution to yield pure ammonium compounds. Our work highlights the importance of advanced reactor design in N-related electrochemistry research, which will facilitate the transformation of the current N-centric chemical industries towards a sustainable future.« less
  2. Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance andmore »low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratio of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1« less
  3. For the scalable production of commercial products based on vertically aligned carbon nanotubes (VACNTs), referred to as CNT forests, key manufacturing challenges must be overcome. In this work, we describe some of the main challenges currently facing CNT forest manufacturing, along with how we address these challenges with our custom-built rapid thermal processing chemical vapor deposition (CVD) reactor. First, the complexity of multistep processes and reaction pathways involved in CNT growth by CVD limits the control on CNT population growth dynamics. Importantly, gas-phase decomposition of hydrocarbons, formation of catalyst particles, and catalytic growth of CNTs are typically coupled. Here, wemore »demonstrated a decoupled recipe with independent control of each step. Second, significant run-to-run variations plague CNT growth by CVD. To improve growth consistency, we designed various measures to remove oxygen-containing molecules from the reactor, including air baking between runs, dynamic pumping down cycles, and low-pressure baking before growth. Third, real-time measurements during growth are needed for process monitoring. We implement in situ height kinetics via videography. The combination of approaches presented here has the potential to transform lab-scale CNT synthesis to robust manufacturing processes.« less
  4. For the scalable production of commercial products based on vertically aligned carbon nanotubes (VACNTs), referred to as CNT forests, key manufacturing challenges must be overcome. In this work, we describe some of the main challenges currently facing CNT forest manufacturing, along with how we address these challenges with our custom-built rapid thermal processing chemical vapor deposition (CVD) reactor. First, the complexity of multistep processes and reaction pathways involved in CNT growth by CVD limits the control on CNT population growth dynamics. Importantly, gas-phase decomposition of hydrocarbons, formation of catalyst particles, and catalytic growth of CNTs are typically coupled. Here, wemore »demonstrated a decoupled recipe with independent control of each step. Second, significant run-to-run variations plague CNT growth by CVD. To improve growth consistency, we designed various measures to remove oxygen-containing molecules from the reactor, including air baking between runs, dynamic pumping down cycles, and low-pressure baking before growth. Third, real-time measurements during growth are needed for process monitoring. We implement in situ height kinetics via videography. The combination of approaches presented here has the potential to transform lab-scale CNT synthesis to robust manufacturing processes.« less
  5. Discrete time crystals (DTC) have been demonstrated experimentally in several different quantum systems in the past few years. Spin couplings and cavity losses have been shown to play crucial roles for realizing DTC order in open many-body systems out of equilibrium. Recently, it has been proposed that eternal and transient DTC can be present with an open Floquet setup in the thermodynamic limit and in the deep quantum regime with few qubits, respectively. In this work, we consider the effects of spin damping and spin dephasing on the DTC order in spin-optomechanical and open cavity systems in which the spinsmore »can be all-to-all coupled. In the thermodynamic limit, it is shown that the existence of dephasing can destroy the coherence of the system and finally lead the system to its trivial steady state. Without dephasing, eternal DTC is displayed in the weak damping regime, which may be destroyed by increasing the all-to-all spin coupling or the spin damping. By contrast, the all-to-all coupling is constructive to the DTC in the moderate damping regime. We also focus on a model which can be experimentally realized by a suspended hexagonal boron nitride (hBN) membrane with a few spin color centers under microwave drive and Floquet magnetic field. Signatures of transient DTC behavior are demonstrated in both weak and moderate dissipation regimes without spin dephasing. Relevant experimental parameters are also discussed for realizing transient DTC order in such an hBN optomechanical system.« less