Approximately 90% of breast cancer related mortalities are due to metastasis to distant organs. At the metastatic sites, cancer cells are capable of evading death by exhibiting cellular or mass dormancy. However, the mechanisms involved in attaining dormancy at the metastatic site are not well understood. This is partly due to the lack of experimental models to study metastatic site‐specific interactions, particularly in the context of brain metastatic breast cancer (BMBC). Herein, an in vitro hyaluronic acid (HA) hydrogel‐based model is developed to study mass dormancy in BMBC. HA hydrogels with a stiffness of ≈0.4 kPa are utilized to mimic the brain extracellular matrix. MDA‐MB‐231Br or BT474Br3 BMBC spheroids are prepared and cultured on top of HA hydrogels or in suspension for 7 days. HA hydrogel induced a near mass dormant state in spheroids by achieving a balance between proliferating and dead cells. In contrast, these spheroids displayed growth in suspension cultures. The ratio of %p‐ERK to %p‐p38 positive cells is significantly lower in HA hydrogels compared to suspension cultures. Further, it is demonstrated that hydrogel induced mass dormant state is reversible. Overall, such models provide useful tools to study dormancy in BMBC and could be employed for drug screening.
- Award ID(s):
- 1749837
- PAR ID:
- 10275624
- Date Published:
- Journal Name:
- Biomaterials Science
- Volume:
- 8
- Issue:
- 23
- ISSN:
- 2047-4830
- Page Range / eLocation ID:
- 6637 to 6646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A majority of breast cancer deaths occur due to metastasis of cancer cells to distant organs. In particular, brain metastasis is very aggressive with an extremely low survival rate. Breast cancer cells that metastasize to the brain can enter a state of dormancy, which allows them to evade death. The brain microenvironment provides biophysical, biochemical, and cellular cues, and plays an important role in determining the fate of dormant cancer cells. However, how these cues influence dormancy remains poorly understood. Herein, we employed hyaluronic acid (HA) hydrogels with a stiffness of ~0.4 kPa as an in vitro biomimetic platform to investigate the impact of biochemical cues, specifically alterations in RGD concentration, on dormancy versus proliferation in MDA‐MB‐231Br brain metastatic breast cancer cells. We applied varying concentrations of RGD peptide (0, 1, 2, or 4 mg/mL) to HA hydrogel surfaces and confirmed varying degrees of surface functionalization using a fluorescently labeled RGD peptide. Post functionalization, ~10,000 MDA‐MB‐231Br cells were seeded on top of the hydrogels and cultured for 5 days. We found that an increase in RGD concentration led to changes in cell morphology, with cells transitioning from a rounded to spindle‐like morphology as well as an increase in cell spreading area. Also, an increase in RGD concentration resulted in an increase in cell proliferation. Cellular dormancy was assessed using the ratio of phosphorylated extracellular signal‐regulated kinase 1/2 (p‐ERK) to phosphorylated p38 (p‐p38) positivity, which was significantly lower in hydrogels without RGD and in hydrogels with lowest RGD concentration compared to hydrogels functionalized with higher RGD concentration. We also demonstrated that the HA hydrogel‐induced cellular dormancy was reversible. Finally, we demonstrated the involvement of β1 integrin in mediating cell phenotype in our hydrogel platform. Overall, our results provide insight into the role of biochemical cues in regulating dormancy versus proliferation in brain metastatic breast cancer cells.
-
Abstract Dormant, disseminated tumor cells (DTCs) can persist for decades in secondary tissues before being reactivated to form tumors. The properties of the premetastatic niche can influence the DTC phenotype. To better understand how matrix properties of premetastatic niches influence DTC behavior, three hydrogel formulations are implemented to model a permissive niche and two nonpermissive niches. Poly(ethylene glycol) (PEG)‐based hydrogels with varying adhesivity ([RGDS]) and degradability ([N‐vinyl pyrrolidinone]) are implemented to mimic a permissive niche with high adhesivity and degradability and two nonpermissive niches, one with moderate adhesivity and degradability and one with no adhesivity and high degradability. The influence of matrix properties on estrogen receptor positive (ER+) breast cancer cells (MCF7s) is determined via a multimetric analysis. MCF7s cultured in the permissive niche adopted a growth state, while those in the nonpermissive niche with reduced adhesivity and degradability underwent tumor mass dormancy. Complete removal of adhesivity while maintaining high degradability induced single cell dormancy. The ability to mimic reactivation of dormant cells through a dynamic increase in [RGDS] is also demonstrated. This platform provides the capability of inducing growth, dormancy, and reactivation of ER+ breast cancer and can be useful in understanding how premetastatic niche properties influence cancer cell fate.
-
Abstract Breast cancer brain metastasis marks the most advanced stage of breast cancer no longer considered curable with a median survival period of ∼4–16 months. Apart from the genetic susceptibility (subtype) of breast tumors, brain metastasis is also dictated by the biophysical/chemical interactions of tumor cells with native brain microenvironment, which remain obscure, primarily due to the lack of tunable biomimetic
in vitro models. To address this need, we utilized a biomimetic hyaluronic acid (HA) hydrogel platform to elucidate the impact of matrix stiffness on the behavior of MDA‐MB‐231Br cells, a brain metastasizing variant of the triple negative breast cancer line MDA‐MB‐231. We prepared HA hydrogels of varying stiffness (0.2–4.5 kPa) bracketing the brain relevant stiffness range to recapitulate the biophysical cues provided by brain extracellular matrix. In this system, we observed that the MDA‐MB‐231Br cell adhesion, spreading, proliferation, and migration significantly increased with the hydrogel stiffness. We also demonstrated that the stiffness based responses of these cells were mediated, in part, through the focal adhesion kinase‐phosphoinositide‐3 kinase pathway. This biomimetic material system with tunable stiffness provides an ideal platform to further the understanding of mechanoregulation associated with brain metastatic breast cancer cells. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1832–1841, 2018. -
Abstract Breast cancer is a leading cause of global cancer‐related deaths, and metastasis is the overwhelming culprit of poor patient prognosis. The most nefarious aspect of metastasis is dormancy, a prolonged period between primary tumor resection and relapse. Current therapies are insufficient at killing dormant cells; thus, they can remain quiescent in the body for decades until eventually undergoing a phenotypic switch, resulting in metastases that are more adaptable and drug resistant. Unfortunately, dormancy has few in vitro models, largely because lab‐derived cell lines are highly proliferative. Existing models address tumor dormancy, not cellular dormancy, because tracking individual cells is technically challenging. To combat this problem, a live cell lineage approach to find and track individual dormant cells, distinguishing them from proliferative and dying cells over multiple days, is adapted. This approach is applied across a range of different in vitro microenvironments. This approach reveals that the proportion of cells that exhibit long‐term quiescence is regulated by both cell intrinsic and extrinsic factors, with the most dormant cells found in 3D collagen gels. This paper envisions that this approach will prove useful to biologists and bioengineers in the dormancy community to identify, quantify, and study dormant tumor cells.