skip to main content

Title: Sampled-Data Observer Based Dynamic Surface Control of Delayed Neuromuscular Functional Electrical Stimulation
Functional electrical stimulation (FES) is a potential technique for reanimating paralyzed muscles post neurological injury/disease. Several technical challenges including difficulty in measuring and compensating for delayed muscle activation levels inhibit its satisfactory control performance. In this paper, an ultrasound (US) imaging approach is proposed to measure delayed muscle activation levels under the implementation of FES. Due to low sampling rates of US imaging, a sampled data observer (SDO) is designed to estimate the muscle activation in a continuous manner. The SDO is combined with continuous-time dynamic surface control (DSC) approach that compensates for the electromechanical delay (EMD) in the tibialis anterior (TA) activation dynamics. The stability analysis based on the Lyapunov-Krasovskii function proves that the SDO-based DSC plus delay compensation (SDO-DSC-DC) approach achieves semi-global uniformly ultimately bounded (SGUUB) tracking performance. Simulation results on an ankle dorsiflexion neuromusculoskeletal system show the root mean square error (RMSE) of desired trajectory tracking is reduced by 19.77 % by using the proposed SDO-DSC-DC compared to the DSC-DC without the SDO. The findings provide potentials for rehabilitative devices, like powered exoskeleton and FES, to assist or enhance human limb movement based on the corresponding muscle activities in real-time.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Sampled-Data Observer Based Dynamic Surface Control of Delayed Neuromuscular Functional Electrical Stimulation
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Functional electrical stimulation (FES) induced exercise, such as motorized FES-cycling, is commonly used in rehabilitation for lower limb movement disorders. A challenge in closed-loop FES control is the presence of an input delay between the application (and removal) of the electrical stimulus and the production of muscle force. Moreover, switching between motor control and FES control of various muscle groups can be destabilizing. This paper examines the development of a control method and state-dependent trigger condition to account for the time-varying input delayed response. Uniformly ultimately bounded tracking for a switched uncertain nonlinear dynamic system with input delays is achieved. 
    more » « less
  2. This paper examines torque tracking accomplished by the activation of lower-limb muscles via Functional Electrical Stimulation (FES) and cadence regulation by an electric motor. Challenges arise from the fact that skeletal muscles evoke torque via FES in a time-varying, nonlinear, and delayed manner. A desired torque trajectory is constructed based on the crank position and determined by the knee joint torque transfer ratio (i.e., kinematic efficiency of the knee), which varies as a periodic function of the crank angle. To cope with this periodicity, a repetitive learning controller is developed to track the desired periodic torque trajectory by stimulating the muscle groups. Concurrently, a sliding-mode controller is designed for the electric motor to maintain cadence tracking throughout the entire crank cycle. A passivity-based analysis is developed to ensure stability of the torque and cadence closed-loop systems. 
    more » « less
  3. Functional electrical stimulation (FES) induced cycling provides a means of therapeutic exercise and functional restoration for people affected by neuromuscular disorders. A challenge in closed-loop FES control of coordinated motion is the presence of a potentially destabilizing input delay between the application of the electrical stimulation and the resulting muscle contraction. Moreover, switching amongst multiple actuators (e.g., between FES control of various muscle groups and a controlled electric motor) presents additional challenges for overall system stability. In this paper, a closed-loop controller is developed to yield exponential cadence tracking, despite an unknown input delay, switching between FES and motor only control, uncertain nonlinear dynamics, and additive disturbances. Lyapunov-Krasovskii functionals are used in a Lyapunov-based stability analysis to ensure exponential convergence for all time. 
    more » « less
  4. A common rehabilitation for those with lower limb movement disorders is motorized functional electrical stimulation (FES) induced cycling. Motorized FES-cycling is a switched system with uncertain dynamics, unknown disturbances, and there exists an unknown time-varying input delay between the application/removal of stimulation and the onset/removal of muscle force. This is further complicated by the fact that each participant has varying levels of sensitivity to the FES input, and the stimulation must be bounded to ensure comfort and safety. In this paper, saturated FES and motor controllers are developed for an FES-cycle that ensure safety and comfort of the participant, while likewise being robust to uncertain parameters in the dynamics, unknown disturbances, and an unknown time-varying input delay. A Lyapunov-based stability analysis is performed to ensure uniformly ultimately bounded cadence tracking. 
    more » « less
  5. Abstract

    There have been significant advances in biosignal extraction techniques to drive external biomechatronic devices or to use as inputs to sophisticated human machine interfaces. The control signals are typically derived from biological signals such as myoelectric measurements made either from the surface of the skin or subcutaneously. Other biosignal sensing modalities are emerging. With improvements in sensing modalities and control algorithms, it is becoming possible to robustly control the target position of an end-effector. It remains largely unknown to what extent these improvements can lead to naturalistic human-like movement. In this paper, we sought to answer this question. We utilized a sensing paradigm called sonomyography based on continuous ultrasound imaging of forearm muscles. Unlike myoelectric control strategies which measure electrical activation and use the extracted signals to determine the velocity of an end-effector; sonomyography measures muscle deformation directly with ultrasound and uses the extracted signals to proportionally control the position of an end-effector. Previously, we showed that users were able to accurately and precisely perform a virtual target acquisition task using sonomyography. In this work, we investigate the time course of the control trajectories derived from sonomyography. We show that the time course of the sonomyography-derived trajectories that users take to reach virtual targets reflect the trajectories shown to be typical for kinematic characteristics observed in biological limbs. Specifically, during a target acquisition task, the velocity profiles followed a minimum jerk trajectory shown for point-to-point arm reaching movements, with similar time to target. In addition, the trajectories based on ultrasound imaging result in a systematic delay and scaling of peak movement velocity as the movement distance increased. We believe this is the first evaluation of similarities in control policies in coordinated movements in jointed limbs, and those based on position control signals extracted at the individual muscle level. These results have strong implications for the future development of control paradigms for assistive technologies.

    more » « less