skip to main content


Title: Semi‐Automated Characterization of Streamwater Specific Conductivity Response to Storms
Abstract

Specific electrical conductivity (SC) is a basic, effective indicator of water quality. The recent increase in SC data collected with high‐frequency sensors has created a strong need for algorithms that can aid interpretation of these data. This study presents an algorithm that finds and quantifies SC temporal patterns and applies that algorithm to a dataset from a 7.5 km2forested catchment in central New Hampshire. During and after rain events, we show three patterns that emerge in SC time series: A solute flush, resulting in an initial increase in SC, followed by a dilution, followed by the SC’s recovery toward pre‐rain conditions. We compared these SC patterns to precipitation amount and intensity, antecedent wetness, and seasonality. Our results indicate that the magnitude of the flush was driven primarily by precipitation intensity and total rainfall during a storm, and secondarily by antecedent moisture conditions. The magnitude of the dilution was driven mainly by the precipitation amount. The rate of SC recovery was driven by precipitation amount and was correlated with dilution. Overall, the algorithm successfully extracted event‐driven characteristics in the SC time series, allowing the development of functional relationships with hydrologic drivers. Applying similar methodologies to more catchments in the future will help identify functional relationships at more sites and use these relationships to identify catchments most sensitive to future precipitation changes.

 
more » « less
NSF-PAR ID:
10275647
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
57
Issue:
5
ISSN:
1093-474X
Page Range / eLocation ID:
p. 844-857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre‐fire conditions. This research examines the connectivity of post‐fire runoff and sediment from hillslopes (<1.5 ha;n= 31) and catchments (<1000 ha;n= 10) within two watersheds (<1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post‐fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration‐excess overland flow, high sediment yields, in‐stream sediment deposition and channel substrate fining. For both storms, hillslope‐to‐stream sediment delivery ratios and area‐normalised cross‐sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope‐to‐stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post‐fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.

     
    more » « less
  2. Abstract

    Predicting winter flooding is critical to protecting people and securing water resources in California’s Sierra Nevada. Rain-on-snow (ROS) events are a common cause of widespread flooding and are expected to increase in both frequency and magnitude with anthropogenic climate change in this region. ROS flood severity depends on terrestrial water input (TWI), the sum of rain and snowmelt that reaches the land surface. However, an incomplete understanding of the processes that control the flow and refreezing of liquid water in the snowpack limits flood prediction by operational and research models. We examine how antecedent snowpack conditions alter TWI during 71 ROS events between water years 1981 and 2019. Observations across a 500-m elevation gradient from the Independence Creek catchment were input into SNOWPACK, a one-dimensional, physically based snow model, initiated with the Richards equation and calibrated with collocated snow pillow observations. We compare observed “historical” and “scenario” ROS events, where we hold meteorologic conditions constant but vary snowpack conditions. Snowpack variables include cold content, snow density, liquid water content, and snow water equivalent. Results indicate that historical events with TWI > rain are associated with the largest observed streamflows. A multiple linear regression analysis of scenario events suggests that TWI is sensitive to interactions between snow density and cold content, with denser (>0.30 g cm−3) and colder (<−0.3 MJ of cold content) snowpacks retaining >50 mm of TWI. These results highlight the importance of hydraulic limitations in dense snowpacks and energy limitations in warm snowpacks for retaining liquid water that would otherwise be available as TWI for flooding.

    Significance Statement

    The purpose of this study is to understand how the snowpack modulates quantities of water that reach the land surface during rain-on-snow (ROS) events. While the amount of near-term storm rainfall is reasonably predicted by meteorologists, major floods associated with ROS are more difficult to predict and are expected to increase in frequency. Our key findings are that liquid water inputs to the land surface vary with snowpack characteristics, and although many hydrologic models incorporate snowpack cold content and density to some degree, the complexity of ROS events justifies the need for additional observations to improve operational forecasting model results. Our findings suggest additional comparisons between existing forecasting models and those that physically represent the snowpack, as well as field-based observations of cold content and density and liquid water content, would be useful follow-up investigations.

     
    more » « less
  3. Abstract

    In snowmelt‐driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high‐relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow‐derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late‐winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid‐summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.

     
    more » « less
  4. Abstract

    Climate change and nitrogen (N) pollution are altering biogeochemical and ecohydrological processes in dryland watersheds, increasing N export, and threatening water quality. While simulation models are useful for projecting how N export will change in the future, most models ignore biogeochemical “hotspots” that develop in drylands as moist microsites in the soil become hydrologically disconnected from plant roots when soils dry out. These hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. To better project future N export, we developed a framework for representing hotspots using the ecohydrological model RHESSys. We then conducted a series of virtual experiments to understand how uncertainties in model structure and parameters influence N export to streams. Modeled N export was sensitive to three major factors (a) the abundance of hotspots in a watershed: N export increased linearly and then reached an asymptote with increasing hotspot abundance; this occurred because carbon and N inputs eventually became limiting as hotspots displaced vegetation cover, (b) the soil moisture threshold required for subsurface flow from hotspots to reestablish: peak streamflow N export increased and then decreased with an increasing threshold due to tradeoffs between N accumulation and export that occur with increasingly disconnected hotspots, and (c) the rate at which water diffused out of hotspots as soils dried down: N export was generally higher when the rate was slow because more N could accumulate in hotspots over dry periods, and then be flushed more rapidly to streams at the onset of rain. In a case study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export increased by 29%, enabling us to better capture the timing and magnitude of N losses observed in the field. N export further increased in response to interannual precipitation variability, particularly when multiple dry years were followed by a wet year. This modeling framework can improve projections of N export in watersheds where hotspots play an increasingly important role in water quality.

     
    more » « less
  5. Abstract

    Concentration–discharge (C‐Q) relationships reflect material sources, storage, reaction, proximity, and transport in catchments. Differences in hydrologic pathways and connectivity influence observed C‐Q patterns at the catchment outlet. We examined solute and sediment C‐Q relationships at event and interannual timescales in a small mid‐Atlantic (USA) catchment. We found systematic differences in the C‐Q behaviour of geogenic/exogenous solutes (e.g., calcium and nitrate), biologically associated solutes (e.g., dissolved organic carbon), and particulate materials (e.g., total suspended solids). Negative log(C)–log(Q) regression slopes, indicating dilution, were common for geogenic solutes whereas positive slopes, indicating concentration increase, were common for biologically associated solutes. Biologically associated solutes often exhibited counterclockwise hysteresis during events whereas geogenic solutes exhibited clockwise hysteresis. Across event and interannual timescales, solute C‐Q patterns are linked to the spatial distribution of hydrologic sources and the timing and sequence of hydro‐biogeochemical source contributions to the stream. Groundwater is the primary source of stormflow during the earliest and latest stages of events, whereas precipitation and soil water become increasingly connected to the stream near peakflow. This sequence and timing of flowpath connectivity results in dilution and clockwise hysteresis for geogenic/exogenous solutes and concentration increase and counterclockwise hysteresis for biologically associated solutes. Particulate materials demonstrated positive C‐Q slopes over the long‐term and clockwise hysteresis during individual events. Drivers of particulate and solute C‐Q relationships differ, based on longitudinal and lateral expansion of active channels and changing shear stresses with increasing flows. Although important distinctions exist between the drivers of solute and sediment C‐Q relationships, overall solute and sediment C‐Q patterns at event and interannual timescales reflect consistent catchment hydro‐biogeochemical processes.

     
    more » « less