For the past few years, deep learning (DL) robustness (i.e. the ability to maintain the same decision when inputs are subject to perturbations) has become a question of paramount importance, in particular in settings where misclassification can have dramatic consequences. To address this question, authors have proposed different approaches, such as adding regularizers or training using noisy examples. In this paper we introduce a regularizer based on the Laplacian of similarity graphs obtained from the representation of training data at each layer of the DL architecture. This regularizer penalizes large changes (across consecutive layers in the architecture) in the distancemore »
Representing Deep Neural Networks Latent Space Geometries with Graphs
Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved more »
- Award ID(s):
- 2009032
- Publication Date:
- NSF-PAR ID:
- 10275729
- Journal Name:
- Algorithms
- Volume:
- 14
- Issue:
- 2
- Page Range or eLocation-ID:
- 39
- ISSN:
- 1999-4893
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiplemore »
-
Recent studies have introduced methods for learning acoustic word embeddings (AWEs)—fixed-size vector representations of words which encode their acoustic features. Despite the widespread use of AWEs in speech processing research, they have only been evaluated quantitatively in their ability to discriminate between whole word tokens. To better understand the applications of AWEs in various downstream tasks and in cognitive modeling, we need to analyze the representation spaces of AWEs. Here we analyze basic properties of AWE spaces learned by a sequence-to-sequence encoder-decoder model in six typologically diverse languages. We first show that these AWEs preserve some information about words’ absolutemore »
-
In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassingmore »
-
In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassingmore »