Abstract This article formulates and solves a stochastic optimization model to investigate the impact of crowdsourced platforms (e.g., ridesharing, on‐demand delivery, volunteer food rescue, and carpooling) offering small, personalized menus of requests and incentive offers for drivers to choose from. To circumvent nonlinear variable relationships, we exploit model structure to formulate the program as a stochastic linear integer program. The proposed solution approach models stochastic responses as a sample of variable and fixed scenarios, and to counterbalance solution overfitting, uses a participation ratio parameter. The problem is also decomposed and iterated among two separate subproblems, one which optimizes menus, and another, which optimizes incentives. Computational experiments, based on a ride sharing application using occasional drivers demonstrate the importance of using multiple scenarios to capture stochastic driver behavior. Our method provides robust performance even when discrepancies between predicted and observed driver behaviors exist. Computational results show that offering menus and personalized incentives can significantly increase match rates and platform profit compared to recommending a single request to each driver. Further, compared to the menu‐only model, the average driver income is increased, and more customer requests are matched. By strategically using personalized incentives to prioritize promising matches and to increase drivers' willingness to accept requests, our approach benefits both drivers and customers. Higher incentives are offered when drivers are more likely to accept, while fewer incentives and menu slots are reserved for driver‐request pairs less likely to be accepted.
more »
« less
Optimizing Driver Menus Under Stochastic Selection Behavior for Ridesharing and Crowdsourced Delivery
Peer-to-peer logistics platforms coordinate independent drivers to fulfill requests for last mile delivery and ridesharing. To balance demand-side performance with driver autonomy, a new stochastic methodology provides drivers with a small but personalized menu of requests to choose from. This creates a Stackelberg game, in which the platform leads by deciding what menu of requests to send to drivers, and the drivers follow by selecting which request(s) they are willing to fulfill from their received menus. Determining optimal menus, menu size, and request overlaps in menus is complex as the platform has limited knowledge of drivers' request preferences. Exploiting the problem structure when drivers signal willingness to participate, we reformulate our problem as an equivalent single-level Mixed Integer Linear Program (MILP) and apply the Sample Average Approximation (SAA) method. Computational tests recommend a training sample size for inputted SAA scenarios and a test sample size for completing performance analysis. Our stochastic optimization approach performs better than current approaches, as well as deterministic optimization alternatives. A simplified formulation ignoring `unhappy drivers' who accept requests but are not matched is shown to produce similar objective values with a fraction of the runtime. A ridesharing case study of the Chicago Regional Transportation network provides insights for a platform wanting to provide driver autonomy via menu creation. The proposed methods achieved high demand performance as long as the drivers are well compensated (e.g., even when drivers are allowed to reject requests, on average over 90% of requests are fulfilled when 80% of the fare goes to drivers; this drops to below 60% when only 40% of the fare goes to drivers). Thus, neither the platform nor the drivers benefit from low driver compensation due to its resulting low driver participation and thus low request fulfillment. Finally, for the cases tested, a maximum menu size of 5 is recommended as it produces good quality platform solutions without requiring much driver selection time.
more »
« less
- Award ID(s):
- 1751801
- PAR ID:
- 10275775
- Date Published:
- Journal Name:
- Transportation research
- ISSN:
- 1366-5545
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Peer-to-peer transportation platforms dynamically match requests (e.g., a ride, a delivery) to independent suppliers who are not employed nor controlled by the platform. Thus, the platform cannot be certain that a supplier will accept an offered request. To mitigate this selection uncertainty, a platform can offer each supplier a menu of requests to choose from. Such menus need to be created carefully because there is a trade-off between selection probability and duplicate selections. In addition to a complex decision space, supplier selection decisions are vast and have systematic implications, impacting the platform’s revenue, other suppliers’ experiences (in the form of duplicate selections), and the request waiting times. Thus, we present a multiple scenario approach, repeatedly sampling potential supplier selections, solving the corresponding two-stage decision problems, and combining the multiple different solutions through a consensus algorithm. Extensive computational results using the Chicago Region as a case study illustrate that our method outperforms a set of benchmark policies. We quantify the value of anticipating supplier selection, offering menus to suppliers, offering requests to multiple suppliers at once, and holistically generating menus with the entire system in mind. Our method leads to more balanced assignments by sacrificing some “easy wins” toward better system performance over time and for all stakeholders involved, including increased revenue for the platform, and decreased match waiting times for suppliers and requests.more » « less
-
This paper proposes a novel quantity-based demand management system that aims to promote ridesharing. The system sells a time-dependent permit to access a road facility (conceptualized as a bottleneck) by auction but encourages commuters to share permits with each other. The commuters may be assigned one of three roles: solo driver, ridesharing driver, or rider. At the core of this auction-based permit allocation and sharing system (A-PASS) is a trilateral matching problem (TMP) that matches permits, drivers, and riders. Formulated as an integer program, TMP is first shown to be tightly bounded by its linear relaxation. A pricing policy based on the classical Vickrey–Clarke–Groves (VCG) mechanism is then devised to determine the payment of each commuter. We prove that, under the VCG policy, different commuters pay exactly the same price as long as their role and access time are the same. Importantly, by controlling the number of shared rides, any deficit that may arise from the VCG policy can be eliminated. This may be achieved with a relatively small loss to system efficiency, thanks to the revenue generated from selling permits. Results of a numerical experiment suggest A-PASS strongly promotes ridesharing. As sharing increases, all stakeholders are better off: the ridesharing platform receives greater profits, the commuters enjoy higher utility, and society benefits from more efficient utilization of the road infrastructure.more » « less
-
We present a feasibility analysis of the controlled delivery power grid (CDG) that uses aggregated power request by users to reduce communications overhead. The CDG, as an approach to the power grid, uses a data network to communicate requests and grants of power in the distribution of electrical power. These requests and grants allow the energy supplier know the power demand in advance and to designate the loads and the time when power is supplied to them. Each load is assigned a power-network address that is used for communication of requests and grants with the energy supplier. With addressed loads, power is only delivered to selected loads. However, issuing a request for power before delivery takes place requires knowing the demand of power the load consumes during the operation interval. However, it is a general concern that having issuing requests in a time-slot basis may risk request losses and therefore, generate intermittent supply. Therefore, we propose request aggregation to minimize the number of requests issued. We show by simulation that the CDG with request aggregation attains high performance, in terms of satisfaction ratio and waiting time for power supply.more » « less
-
We study the design of state dependent control for a closed queueing network model, inspired by shared transportation systems such as ridesharing. In particular, we focus on the design of assignment policies, wherein the platform can choose which supply unit to dispatch to meet an incoming customer request. The supply unit subsequently becomes available at the destination after dropping the customer. We consider the proportion of dropped demand in steady state as the performance measure. We propose a family of simple and explicit state dependent policies called Scaled MaxWeight (SMW) policies and prove that under the complete resource pooling (CRP) condition (analogous to a strict version of Hall's condition for bipartite matchings), any SMW policy induces an exponential decay of demand-dropping probability as the number of supply units scales to infinity. Furthermore, we show that there is an SMW policy that achieves the optimal exponent among all assignment policies, and analytically specify this policy in terms of the matrix of customer-request arrival rates. The optimal SMW policy protects structurally under-supplied locations.more » « less
An official website of the United States government

