skip to main content

Title: Astrid: accurate selectivity estimation for string predicates using deep learning
Accurate selectivity estimation for string predicates is a long-standing research challenge in databases. Supporting pattern matching on strings (such as prefix, substring, and suffix) makes this problem much more challenging, thereby necessitating a dedicated study. Traditional approaches often build pruned summary data structures such as tries followed by selectivity estimation using statistical correlations. However, this produces insufficiently accurate cardinality estimates resulting in the selection of sub-optimal plans by the query optimizer. Recently proposed deep learning based approaches leverage techniques from natural language processing such as embeddings to encode the strings and use it to train a model. While this is an improvement over traditional approaches, there is a large scope for improvement. We propose Astrid, a framework for string selectivity estimation that synthesizes ideas from traditional and deep learning based approaches. We make two complementary contributions. First, we propose an embedding algorithm that is query-type (prefix, substring, and suffix) and selectivity aware. Consider three strings 'ab', 'abc' and 'abd' whose prefix frequencies are 1000, 800 and 100 respectively. Our approach would ensure that the embedding for 'ab' is closer to 'abc' than 'abd'. Second, we describe how neural language models could be used for selectivity estimation. While they work well for prefix queries, their performance for substring queries is sub-optimal. We modify the objective function of the neural language model so that it could be used for estimating selectivities of pattern matching queries. We also propose a novel and efficient algorithm for optimizing the new objective function. We conduct extensive experiments over benchmark datasets and show that our proposed approaches achieve state-of-the-art results.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Page Range / eLocation ID:
471 to 484
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mikolaj Bojanczyk ; Emanuela Merelli ; David P. Woodruff (Ed.)
    Two equal length strings are a parameterized match (p-match) iff there exists a one-to-one function that renames the symbols in one string to those in the other. The Parameterized Suffix Tree (PST) [Baker, STOC' 93] is a fundamental data structure that handles various string matching problems under this setting. The PST of a text T[1,n] over an alphabet Σ of size σ takes O(nlog n) bits of space. It can report any entry in (parameterized) (i) suffix array, (ii) inverse suffix array, and (iii) longest common prefix (LCP) array in O(1) time. Given any pattern P as a query, a position i in T is an occurrence iff T[i,i+|P|-1] and P are a p-match. The PST can count the number of occurrences of P in T in time O(|P|log σ) and then report each occurrence in time proportional to that of accessing a suffix array entry. An important question is, can we obtain a compressed version of PST that takes space close to the text’s size of nlogσ bits and still support all three functionalities mentioned earlier? In SODA' 17, Ganguly et al. answered this question partially by presenting an O(nlogσ) bit index that can support (parameterized) suffix array and inverse suffix array operations in O(log n) time. However, the compression of the (parameterized) LCP array and the possibility of faster suffix array and inverse suffix array queries in compact space were left open. In this work, we obtain a compact representation of the (parameterized) LCP array. With this result, in conjunction with three new (parameterized) suffix array representations, we obtain the first set of PST representations in o(nlog n) bits (when logσ = o(log n)) as follows. Here ε > 0 is an arbitrarily small constant. - Space O(n logσ) bits and query time O(log_σ^ε n); - Space O(n logσlog log_σ n) bits and query time O(log log_σ n); and - Space O(n logσ log^ε_σ n) bits and query time O(1). The first trade-off is an improvement over Ganguly et al.’s result, whereas our third trade-off matches the optimal time performance of Baker’s PST while squeezing the space by a factor roughly log_σ n. We highlight that our trade-offs match the space-and-time bounds of the best-known compressed text indexes for exact pattern matching and further improvement is highly unlikely. 
    more » « less
  2. null (Ed.)
    Given an input string, the Burrows-Wheeler Transform (BWT) can be seen as a reversible permutation of it that allows efficient compression and fast substring queries. Due to these properties, it has been widely applied in the analysis of genomic sequence data, enabling important tasks such as read alignment. Mantaci et al. [TCS2007] extended the notion of the BWT to a collection of strings by defining the extended Burrows-Wheeler Transform (eBWT). This definition requires no modification of the input collection, and has the property that the output is independent of the order of the strings in the collection. However, over the years, the term eBWT has been used more generally to describe any BWT of a collection of strings. The fundamental property of the original definition (i.e., the independence from the input order) is frequently disregarded. In this paper, we propose a simple linear-time algorithm for the construction of the original eBWT, which does not require the preprocessing of Bannai et al. [CPM 2021]. As a byproduct, we obtain the first linear-time algorithm for computing the BWT of a single string that uses neither an end-of-string symbol nor Lyndon rotations. We also combine our new eBWT construction with a variation of prefix-free parsing (PFP) [WABI 2019] to allow for construction of the eBWT on large collections of genomic sequences. We implement this combined algorithm (pfpebwt) and evaluate it on a collection of human chromosomes 19 from the 1,000 Genomes Project, on a collection of Salmonella genomes from GenomeTrakr, and on a collection of SARS-CoV2 genomes from EBI’s COVID-19 data portal. We demonstrate that pfpebwt is the fastest method for all collections, with a maximum speedup of 7.6x on the second best method. The peak memory is at most 2x larger than the second best method. Comparing with methods that are also, as our algorithm, able to report suffix array samples, we obtain a 57.1x improvement in peak. 
    more » « less
  3. Abstract Motivation

    Modern methods for computation-intensive tasks in sequence analysis (e.g. read mapping, sequence alignment, genome assembly, etc.) often first transform each sequence into a list of short, regular-length seeds so that compact data structures and efficient algorithms can be employed to handle the ever-growing large-scale data. Seeding methods using kmers (substrings of length k) have gained tremendous success in processing sequencing data with low mutation/error rates. However, they are much less effective for sequencing data with high error rates as kmers cannot tolerate errors.


    We propose SubseqHash, a strategy that uses subsequences, rather than substrings, as seeds. Formally, SubseqHash maps a string of length n to its smallest subsequence of length k, k < n, according to a given order overall length-k strings. Finding the smallest subsequence of a string by enumeration is impractical as the number of subsequences grows exponentially. To overcome this barrier, we propose a novel algorithmic framework that consists of a specifically designed order (termed ABC order) and an algorithm that computes the minimized subsequence under an ABC order in polynomial time. We first show that the ABC order exhibits the desired property and the probability of hash collision using the ABC order is close to the Jaccard index. We then show that SubseqHash overwhelmingly outperforms the substring-based seeding methods in producing high-quality seed-matches for three critical applications: read mapping, sequence alignment, and overlap detection. SubseqHash presents a major algorithmic breakthrough for tackling the high error rates and we expect it to be widely adapted for long-reads analysis.

    Availability and implementation

    SubseqHash is freely available at

    more » « less
  4. Belazzougui, Djamal ; Ouangraoua, Aïda (Ed.)
    String indexes such as the suffix array (SA) and the closely related longest common prefix (LCP) array are fundamental objects in bioinformatics and have a wide variety of applications. Despite their importance in practice, few scalable parallel algorithms for constructing these are known, and the existing algorithms can be highly non-trivial to implement and parallelize. In this paper we present CaPS-SA, a simple and scalable parallel algorithm for constructing these string indexes inspired by samplesort. Due to its design, CaPS-SA has excellent memory-locality and thus incurs fewer cache misses and achieves strong performance on modern multicore systems with deep cache hierarchies. We show that despite its simple design, CaPS-SA outperforms existing state-of-the-art parallel SA and LCP-array construction algorithms on modern hardware. Finally, motivated by applications in modern aligners where the query strings have bounded lengths, we introduce the notion of a bounded-context SA and show that CaPS-SA can easily be extended to exploit this structure to obtain further speedups. 
    more » « less
  5. Real-time decision making in IoT applications relies upon space-efficient evaluation of queries over streaming data. To model the uncertainty in the classification of data being processed, we consider the model of probabilistic strings --- sequences of discrete probability distributions over a finite set of events, and initiate the study of space complexity of streaming computation for different classes of queries over such probabilistic strings. We first consider the problem of computing the probability that a word, sampled from the distribution defined by the probabilistic string read so far, is accepted by a given deterministic finite automaton. We show that this regular pattern matching problem can be solved using space that is only poly-logarithmic in the string length (and polynomial in the size of the DFA) if we are allowed a multiplicative approximation error. Then we show how to generalize this result to quantitative queries specified by additive cost register automata --- these are automata that map strings to numerical values using finite control and registers that get updated using linear transformations. Finally, we consider the case when updates in such an automaton involve tests, and in particular, when there is a counter variable that can be either incremented or decremented but decrements only apply when the counter value is non-zero. In this case, the desired answer depends on the probability distribution over the set of possible counter values that can range from 0 to n for a string of length n. Under a mild assumption, namely probabilities of the individual events are bounded away from 0 and 1, we show that there is an algorithm that can compute all n entries of this probability distribution vector to within additive 1/poly(n) error using space that is only Õ(n). In establishing these results, we introduce several new technical ideas that may prove useful for designing space-efficient algorithms for other query models over probabilistic strings. 
    more » « less