A widely accepted view in memory research is that recently stored information can be reactivated during sleep, leading to memory strengthening. Two recent studies have shown that this effect can be reversed in participants with highly disrupted sleep. To test whether weakening of reactivated memories can result directly from sleep disruption, in this experiment we varied the intensity of memory reactivation cues such that some produced sleep arousals. Prior to sleep, participants (local community members) learned the locations of 75 objects, each accompanied by a sound naturally associated with that object. Location recall was tested before and after sleep, and a subset of the sounds was presented during sleep to provoke reactivation of the corresponding locations. Reactivation with sleep arousal weakened memories, unlike the improvement typically found after reactivation without sleep arousal. We conclude that reactivated memories can be selectively weakened during sleep, and that memory reactivation may strengthen or weaken memories depending on additional factors such as concurrent sleep disruption.
more »
« less
Memory and Sleep: How Sleep Cognition Can Change the Waking Mind for the Better
The memories that we retain can serve many functions. They guide our future actions, form a scaffold for constructing the self, and continue to shape both the self and the way we perceive the world. Although most memories we acquire each day are forgotten, those integrated within the structure of multiple prior memories tend to endure. A rapidly growing body of research is steadily elucidating how the consolidation of memories depends on their reactivation during sleep. Processing memories during sleep not only helps counteract their weakening but also supports problem solving, creativity, and emotional regulation. Yet, sleep-based processing might become maladaptive, such as when worries are excessively revisited. Advances in research on memory and sleep can thus shed light on how this processing influences our waking life, which can further inspire the development of novel strategies for decreasing detrimental rumination-like activity during sleep and for promoting beneficial sleep cognition.
more »
« less
- PAR ID:
- 10275880
- Date Published:
- Journal Name:
- Annual Review of Psychology
- Volume:
- 72
- Issue:
- 1
- ISSN:
- 0066-4308
- Page Range / eLocation ID:
- 123 to 150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Memory consolidation involves the reactivation of memory traces during sleep. If different memories are reactivated each night, how much do they interfere with one another? We examined whether reactivating multiple memories incurs a cost to sleep-related benefits by contrasting reactivation of multiple memories versus single memories during sleep. First, participants learned the on-screen location of different objects. Each object was part of a semantically coherent group comprised of either one, two, or six items (e.g., six different cats). During sleep, sounds were unobtrusively presented to reactivate memories for half of the groups (e.g., “meow”). Memory benefits for cued versus non-cued items were independent of the number of items in the group, suggesting that reactivation occurs in a simultaneous and promiscuous manner. Intriguingly, sleep spindles and delta-theta power modulations were sensitive to group size, reflecting the extent of previous learning. Our results demonstrate that multiple memories may be consolidated in parallel without compromising each memory’s sleep-related benefit. These findings highlight alternative models for parallel consolidation that should be considered in future studies.more » « less
-
REM sleep is important for the processing of emotional memories, including fear memories. Rhythmic interactions, especially in the theta band, between the medial prefrontal cortex (mPFC) and limbic structures are thought to play an important role, but the ways in which memory processing occurs at a mechanistic and circuits level are largely unknown. To investigate how rhythmic interactions lead to fear extinction during REM sleep, we used a biophysically based model that included the infralimbic cortex (IL), a part of the mPFC with a critical role in suppressing fear memories. Theta frequency (4–12 Hz) inputs to a given cell assembly in IL, representing an emotional memory, resulted in the strengthening of connections from the IL to the amygdala and the weakening of connections from the amygdala to the IL, resulting in the suppression of the activity of fear expression cells for the associated memory. Lower frequency (4 Hz) theta inputs effected these changes over a wider range of input strengths. In contrast, inputs at other frequencies were ineffective at causing these synaptic changes and did not suppress fear memories. Under post-traumatic stress disorder (PTSD) REM sleep conditions, rhythmic activity dissipated, and 4 Hz theta inputs to IL were ineffective, but higher-frequency (10 Hz) theta inputs to IL induced changes similar to those seen with 4 Hz inputs under normal REM sleep conditions, resulting in the suppression of fear expression cells. These results suggest why PTSD patients may repeatedly experience the same emotionally charged dreams and suggest potential neuromodulatory therapies for the amelioration of PTSD symptoms. SIGNIFICANCE STATEMENT Rhythmic interactions in the theta band between the mPFC and limbic structures are thought to play an important role in processing emotional memories, including fear memories, during REM sleep. The infralimbic cortex (IL) in the mPFC is thought to play a critical role in suppressing fear memories. We show that theta inputs to the IL, unlike other frequency inputs, are effective in producing synaptic changes that suppress the activity of fear expression cells associated with a given memory. Under PTSD REM sleep conditions, lower-frequency (4 Hz) theta inputs to the IL do not suppress the activity of fear expression cells associated with the given memory but, surprisingly, 10 Hz inputs do. These results suggest potential neuromodulatory therapies for PTSD.more » « less
-
Many people have claimed that sleep has helped them solve a difficult problem, but empirical support for this assertion remains tentative. The current experiment tested whether manipulating information processing during sleep impacts problem incubation and solving. In memory studies, delivering learning-associated sound cues during sleep can reactivate memories. We therefore predicted that reactivating previously unsolved problems could help people solve them. In the evening, we presented 57 participants with puzzles, each arbitrarily associated with a different sound. While participants slept overnight, half of the sounds associated with the puzzles they had not solved were surreptitiously presented. The next morning, participants solved 31.7% of cued puzzles, compared with 20.5% of uncued puzzles (a 55% improvement). Moreover, cued-puzzle solving correlated with cued-puzzle memory. Overall, these results demonstrate that cuing puzzle information during sleep can facilitate solving, thus supporting sleep’s role in problem incubation and establishing a new technique to advance understanding of problem solving and sleep cognition.more » « less
-
Abstract Artificial neural networks are known to suffer from catastrophic forgetting: when learning multiple tasks sequentially, they perform well on the most recent task at the expense of previously learned tasks. In the brain, sleep is known to play an important role in incremental learning by replaying recent and old conflicting memory traces. Here we tested the hypothesis that implementing a sleep-like phase in artificial neural networks can protect old memories during new training and alleviate catastrophic forgetting. Sleep was implemented as off-line training with local unsupervised Hebbian plasticity rules and noisy input. In an incremental learning framework, sleep was able to recover old tasks that were otherwise forgotten. Previously learned memories were replayed spontaneously during sleep, forming unique representations for each class of inputs. Representational sparseness and neuronal activity corresponding to the old tasks increased while new task related activity decreased. The study suggests that spontaneous replay simulating sleep-like dynamics can alleviate catastrophic forgetting in artificial neural networks.more » « less
An official website of the United States government

