skip to main content


Title: A global dataset of inland fisheries expert knowledge
Abstract

Inland fisheries and their freshwater habitats face intensifying effects from multiple natural and anthropogenic pressures. Fish harvest and biodiversity data remain largely disparate and severely deficient in many areas, which makes assessing and managing inland fisheries difficult. Expert knowledge is increasingly used to improve and inform biological or vulnerability assessments, especially in data-poor areas. Integrating expert knowledge on the distribution, intensity, and relative influence of human activities can guide natural resource management strategies and institutional resource allocation and prioritization. This paper introduces a dataset summarizing the expert-perceived state of inland fisheries at the basin (fishery) level. An electronic survey distributed to professional networks (June-September 2020) captured expert perceptions (n = 536) of threats, successes, and adaptive capacity to fisheries across 93 hydrological basins, 79 countries, and all major freshwater habitat types. This dataset can be used to address research questions with conservation relevance, including: demographic influences on perceptions of threat, adaptive capacities for climate change, external factors driving multi-stressor interactions, and geospatial threat assessments.

 
more » « less
NSF-PAR ID:
10276005
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
8
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET 
    more » « less
  2. Student perceptions of programming can impact their experiences in introductory computer science (CS) courses. For example, some students negatively assess their own ability in response to moments that are natural parts of expert practice, such as using online resources or getting syntax errors. Systems that automatically detect these moments from interaction log data could help us study these moments and intervene when the occur. However, while researchers have analyzed programming log data, few systems detect pre-defined moments, particularly those based on student perceptions. We contribute a new approach and system for detecting programming moments that students perceive as important from interaction log data. We conducted retrospective interviews with 41 CS students in which they identified moments that can prompt negative self-assessments. Then we created a qualitative codebook of the behavioral patterns indicative of each moment, and used this knowledge to build an expert system. We evaluated our system with log data collected from an additional 33 CS students. Our results are promising, with F1 scores ranging from 66% to 98%. We believe that this approach can be applied in many domains to understand and detect student perceptions of learning experiences. 
    more » « less
  3. Abstract

    Centuries of human development have altered the connectivity of rivers, adversely impacting ecosystems and the services they provide. Significant investments in natural resource projects are made annually with the goal of restoring function to degraded rivers and floodplains and protecting freshwater resources. Yet restoration projects often fall short of their objectives, in part due to the lack of systems‐based strategic planning. To evaluate channel‐floodplain (dis)connectivity and erosion/incision hazard at the basin scale, we calculate Specific Stream Power (SSP), an estimate of the energy of a river, using a topographically based, low‐complexity hydraulic model. Other basin‐wide SSP modeling approaches neglect reach‐specific geometric information embedded in Digital Elevation Models. Our approach leverages this information to generate reach‐specific SSP‐flow curves. We extract measures from these curves that describe (dis)connected floodwater storage capacity and erosion hazard at individual design storm flood stages and demonstrate how these measures may be used to identify watershed‐scale patterns in connectivity. We show proof‐of‐concept using 25 reaches in the Mad River watershed in central Vermont and demonstrate that the SSP results have acceptable agreement with a well‐calibrated process‐based model (2D Hydraulic Engineering Center's River Analysis System) across a broad range of design events. While systems‐based planning of regional restoration and conservation activities has been limited, largely due to computational and human resource requirements, measures derived from low‐complexity models can provide an overview of reach‐scale conditions at the regional level and aid planners in identifying areas for further restoration and/or conservation assessments.

     
    more » « less
  4. Abstract

    The ecosystem services provided by freshwater biodiversity are threatened by development and environmental and climate change in the Anthropocene.

    Here, case studies are described to show that a focus on the shared dependence on freshwater ecosystem functioning can mutually benefit fisheries and conservation agendas in the Anthropocene.

    Meeting the threat to fish biodiversity and fisher livelihood is pertinent in developing regions where there is often a convergence between high biodiversity, high dependency on aquatic biota and rapid economic development (see Kafue River, Logone floodplain, Tonle Sap, and Rio Negro case studies).

    These case studies serve as evidence that biodiversity conservation goals can be achieved by emphasizing a sustainable fisheries agenda with partnerships, shared knowledge and innovation in fisheries management (see Kafue River and Kenai River case studies).

    In all case studies, aquatic biodiversity conservation and fisheries agendas are better served if efforts focused on creating synergies between fishing activities with ecosystem functioning yield long‐term livelihood and food security narratives.

    A unified voice from conservation and fisheries communities has more socio‐economic and political capital to advocate for biodiversity and social interests in freshwater governance decisions.

     
    more » « less
  5. Abstract

    Low‐elevation coastal areas are increasingly vulnerable to seawater flooding as sea levels rise and the frequency and intensity of large storms increase with climate change. Seawater flooding can lead to the salinization of fresh coastal aquifers by vertical saltwater intrusion (SWI). Vertical SWI is often overlooked in coastal zone threat assessments despite the risk it poses to critical freshwater resources and salt‐intolerant ecosystems that sustain coastal populations. This review synthesizes field and modeling approaches for investigating vertical SWI and the practical and theoretical understanding of salinization and flushing processes obtained from prior studies. The synthesis explores complex vertical SWI dynamics that are influenced by density‐dependent flow and oceanic, hydrologic, geologic, climatic, and anthropogenic forcings acting on coastal aquifers across spatial and temporal scales. Key knowledge gaps, management challenges, and research opportunities are identified to help advance our understanding of the vulnerability of fresh coastal groundwater. Past modeling studies often focus on idealized aquifer systems, and thus future work could consider more diverse geologic, climatic, and topographic environments. Concurrent field and modeling programs should be sustained over time to capture interactions between physical processes, repeated salinization and flushing events, and delayed aquifer responses. Finally, this review highlights the need for improved coordination and knowledge translation across disciplines (e.g., coastal engineering, hydrogeology, oceanography, social science) to gain a more holistic understanding of vertical SWI. There also needs to be more education of communities, policy makers, and managers to motivate societal action to address coastal groundwater vulnerability in a changing climate.

     
    more » « less