skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SAFER: A Structure-free Approach for Certified Robustness to Adversarial Word Substitutions
State-of-the-art NLP models can often be fooled by human-unaware transformations such as synonymous word substitution. For security reasons, it is of critical importance to develop models with certified robustness that can provably guarantee that the prediction is can not be altered by any possible synonymous word substitution. In this work, we propose a certified robust method based on a new randomized smoothing technique, which constructs a stochastic ensemble by applying random word substitutions on the input sentences, and leverage the statistical properties of the ensemble to provably certify the robustness. Our method is simple and structure-free in that it only requires the black-box queries of the model outputs, and hence can be applied to any pre-trained models (such as BERT) and any types of models (world-level or subword-level). Our method significantly outperforms recent state-of-the-art methods for certified robustness on both IMDB and Amazon text classification tasks. To the best of our knowledge, we are the first work to achieve certified robustness on large systems such as BERT with practically meaningful certified accuracy.  more » « less
Award ID(s):
1846421
PAR ID:
10276244
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Meeting of the Association for Computational Linguistics (ACL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we study the response of large models from the BERT family to incoherent inputs that should confuse any model that claims to understand natural language. We define simple heuristics to construct such examples. Our experiments show that state-of-the-art models consistently fail to recognize them as ill-formed, and instead produce high confidence predictions on them. As a consequence of this phenomenon, models trained on sentences with randomly permuted word order perform close to state-of-the-art models. To alleviate these issues, we show that if models are explicitly trained to recognize invalid inputs, they can be robust to such attacks without a drop in performance. 
    more » « less
  2. Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics. 
    more » « less
  3. Forward invariance is a long-studied property in control theory that is used to certify that a dynamical system stays within some pre-specified set of states for all time, and also admits robustness guarantees (e.g., the certificate holds under perturbations). We propose a general framework for training and provably certifying robust forward invariance in Neural ODEs. We apply this framework in two settings: certified adversarial robustness for image classification, and certified safety in continuous control. Notably, our method empirically produces superior adversarial robustness guarantees compared to prior work on certifiably robust Neural ODEs (including implicit-depth models). 
    more » « less
  4. Geometric image transformations that arise in the real world, such as scaling and rotation, have been shown to easily deceive deep neural networks (DNNs). Hence, training DNNs to be certifiably robust to these perturbations is critical. However, no prior work has been able to incorporate the objective of deterministic certified robustness against geometric transformations into the training procedure, as existing verifiers are exceedingly slow. To address these challenges, we propose the first provable defense for deterministic certified geometric robustness. Our framework leverages a novel GPU-optimized verifier that can certify images between 60× to 42,600× faster than existing geometric robustness verifiers, and thus unlike existing works, is fast enough for use in training. Across multiple datasets, our results show that networks trained via our framework consistently achieve state-of-the-art deterministic certified geometric robustness and clean accuracy. Furthermore, for the first time, we verify the geometric robustness of a neural network for the challenging, real-world setting of autonomous driving. 
    more » « less
  5. Data poisoning attacks and backdoor attacks aim to corrupt a machine learning classifier via modifying, adding, and/or removing some carefully selected training examples, such that the corrupted classifier makes incorrect predictions as the attacker desires. The key idea of state-of-the-art certified defenses against data poisoning attacks and backdoor attacks is to create a majority vote mechanism to predict the label of a testing example. Moreover, each voter is a base classifier trained on a subset of the training dataset. Classical simple learning algorithms such as k nearest neighbors (kNN) and radius nearest neighbors (rNN) have intrinsic majority vote mechanisms. In this work, we show that the intrinsic majority vote mechanisms in kNN and rNN already provide certified robustness guarantees against data poisoning attacks and backdoor attacks. Moreover, our evaluation results on MNIST and CIFAR10 show that the intrinsic certified robustness guarantees of kNN and rNN outperform those provided by state-of-the-art certified defenses. Our results serve as standard baselines for future certified defenses against data poisoning attacks and backdoor attacks. 
    more » « less