skip to main content

Title: The Effects of Narrowband Interference on OCDM
Abstract: Orthogonal chirp division multiplexing (OCDM) is a fairly new multi-carrier modulation scheme that has been proposed for optical fiber communications. It spreads data over an entire band using a set of linear chirps that are mutually orthogonal thus achieving the maximum spectral efficiency. This paper analyzes the performance of OCDM in wireless multi-path channels with narrow band interference (NBI) and in doing so shows that linear minimum mean squared error (MMSE) equalization exhibits an interesting signal-to-noise ratio (SNR) dependent degradation in error performance caused by interference amplification at high SNR. Furthermore, it employs a variant of the MMSE equalizer when the interference energy is known to prevent interference amplification and improve the error performance.
Authors:
;
Award ID(s):
1821819
Publication Date:
NSF-PAR ID:
10276431
Journal Name:
2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Page Range or eLocation-ID:
1 to 5
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper focuses on the mutual information and minimum mean-squared error (MMSE) as a function a matrix- valued signal-to-noise ratio (SNR) for a linear Gaussian channel with arbitrary input distribution. As shown by Lamarca, the mutual-information is a concave function of a positive semi- definite matrix, which we call the matrix SNR. This implies that the mapping from the matrix SNR to the MMSE matrix is decreasing monotone. Building upon these functional properties, we start to construct a unifying framework that provides a bridge between classical information-theoretic inequalities, such as the entropy power inequality, and interpolation techniques used in statistical physics and random matrix theory. This framework provides new insight into the structure of phase transitions in coding theory and compressed sensing. In particular, it is shown that the parallel combination of linear channels with freely-independent matrices can be characterized succinctly via free convolution.
  2. Orthogonal signal-division multiplexing (OSDM) is one of the generalized modulation schemes that bring the gap between orthogonal frequency division multiplexing (OFDM) and single carrier frequency domain equalization (SC-FDE). By performing encoding upon subvectors of each interleaved block, it enjoys a flexible resource management with low peak-to-average power ratio (PAPR). Meanwhile, the OSDM induces the intervector interference (IVI) inherently, which requires a more powerful equalizer. By deriving the input and output system model, this paper proposes a time domain soft decision feedback equalizer (SDFE) on per vector equalization with successful soft interference cancellation (SSIC). In addition, this paper takes the whole OSDM block to perform the channel encoding rather than on each vector of the OSDM. Simulation and experimental results demonstrate that the proposed SDFE with SSIC structure outperforms the conventional minimum mean square error (MMSE) equalizer and the block encoding (BE) scheme outperforms the vector encoding (VE) scheme, because theoretically the longer the encoded bit stream is, the more stable and more confident the maximum a posteriori probability (MAP) decoder will be.
  3. Orthogonal signal-division multiplexing (OSDM) is one of the generalized modulation schemes that bring the gap between orthogonal frequency division multiplexing (OFDM) and single carrier frequency domain equalization (SC-FDE). By performing encoding upon subvectors of each interleaved block, it enjoys a flexible resource management with low peakto- average power ratio (PAPR). Meanwhile, the OSDM induces the intervector interference (IVI) inherently, which requires a more powerful equalizer. By deriving the input and output system model, this paper proposes a time domain soft decision feedback equalizer (SDFE) on per vector equalization with successful soft interference cancellation (SSIC). In addition, this paper takes the whole OSDM block to perform the channel encoding rather than on each vector of the OSDM. Simulation and experimental results demonstrate that the proposed SDFE with SSIC structure outperforms the conventional minimum mean square error (MMSE) equalizer and the block encoding (BE) scheme outperforms the vector encoding (VE) scheme, because theoretically the longer the encoded bit stream is, the more stable and more confident the maximum a posteriori probability (MAP) decoder will be.
  4. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distributionmore »network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network.« less
  5. Linear minimum mean-square error (L-MMSE) equalization is among the most popular methods for data detection in massive multi-user multiple-input multiple-output (MU-MIMO) wireless systems. While L-MMSE equalization enables near-optimal spectral efficiency, accurate knowledge of the signal and noise powers is necessary. Furthermore, corresponding VLSI designs must solve linear systems of equations, which requires high arithmetic precision, exhibits stringent data dependencies, and results in high circuit complexity. This paper proposes the first VLSI design of the NOnParametric Equalizer (NOPE), which avoids knowledge of the transmit signal and noise powers, provably delivers the performance of L-MMSE equalization for massive MU-MIMO systems, and is resilient to numerous system and hardware impairments due to its parameter-free nature. Moreover, NOPE avoids computation of a matrix inverse and only requires hardware-friendly matrix-vector multiplications. To showcase the practical advantages of NOPE, we propose a parallel VLSI architecture and provide synthesis results in 28nm CMOS. We demonstrate that NOPE performs on par with existing data detectors for massive MU-MIMO that require accurate knowledge of the signal and noise powers.