Abstract Snowmelt‐dominated runoff regimes have defined northern Alaskan rivers. Discharge records from three watersheds within the National Petroleum Reserve in Alaska (NPR‐A) span 19 years and capture three notable periods of changing runoff. In the first, 2001–2008, mean annual runoff (MAR) averaged 90 mm, characterized by sharp snowmelt runoff and summer drought. Over the next 7 years, larger MAR averaged 120 mm driven by high and early snowmelt runoff. The most recent 4 years, 2016–2019, had even higher MAR of 163 mm with high and sustained late summer flows. Hydrograph analysis suggests a shift toward rainfall‐dominated runoff in the most recent period compared to snowmelt‐dominated hydrographs in the previous two. Declining sea ice appears closely linked to increasing late summer precipitation and a shift toward rainfall runoff. Future development in the NPR‐A will require continued hydrological monitoring and planning to mitigate flood and erosion hazards, permafrost degradation, and ecosystem impairment.
more »
« less
Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds
Abstract. In the past decades, data-driven machine-learning (ML) models have emerged as promising tools for short-term streamflow forecasting. Among other qualities, the popularity of ML models for such applications is due to their relative ease in implementation, less strict distributional assumption, and competitive computational and predictive performance. Despite the encouraging results, most applications of ML for streamflow forecasting have been limited to watersheds in which rainfall is the major source of runoff. In this study, we evaluate the potential of random forests (RFs), a popular ML method, to make streamflow forecasts at 1 d of lead time at 86 watersheds in the Pacific Northwest. These watersheds cover diverse climatic conditions and physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds are classified into three hydrologic regimes based on the timing of center-of-annual flow volume: rainfall-dominated, transient, and snowmelt-dominated. RF performance is benchmarked against naïve and multiple linear regression (MLR) models and evaluated using four criteria: coefficient of determination, root mean squared error, mean absolute error, and Kling–Gupta efficiency (KGE). Model evaluation scores suggest that the RF performs better in snowmelt-driven watersheds compared to rainfall-driven watersheds. The largest improvements in forecasts compared to benchmark models are found among rainfall-driven watersheds. RF performance deteriorates with increases in catchment slope and soil sandiness. We note disagreement between two popular measures of RF variable importance and recommend jointly considering these measures with the physical processes under study. These and other results presented provide new insights for effective application of RF-based streamflow forecasting.
more »
« less
- PAR ID:
- 10276435
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 25
- Issue:
- 6
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 2997 to 3015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Streamflow forecasting at a subseasonal time scale (10–30 days into the future) is important for various human activities. The ensemble streamflow prediction (ESP) is a widely applied technique for subseasonal streamflow forecasting. However, ESP’s reliance on the randomly resampled historical precipitation limits its predictive capability. Available dynamical subseasonal precipitation forecasts provide an alternative to the randomly resampled precipitation in ESP. Prior studies found the predictive performance of raw subseasonal precipitation forecast is limited in many regions such as the central south of the United States, which raises questions about its effectiveness in assisting streamflow forecasting. To further assess the hydrologic applicability of dynamical subseasonal precipitation forecasts, we test the subseasonal precipitation forecast from North America Multi-Model Ensemble Phase II (NMME-2) at four watersheds in the central south region of the United States. The subseasonal precipitation forecasts are postprocessed with bias correction and spatial disaggregation (BCSD) to correct bias and improve spatial resolution before replacing the randomly resampled precipitation in ESP for streamflow predictions. The performance of the resulting streamflow predictions is benchmarked with ESP. Evaluation is conducted using Kling–Gupta Efficiency (KGE), continuous ranked probability score (CRPS), probability of detection (POD), false alarm ratios (FARs), as well as reliability diagrams. Our results suggest that BCSD-corrected subseasonal precipitation forecasts lead to overall improved streamflow predictions due to added skills in winter and spring. Our results also suggest that BCSD-corrected subseasonal precipitation forecasts lead to improved predictions on the occurrence of high-percentile streamflow values above 75%. Overall, BCSD-corrected subseasonal precipitation has shown promising performance, highlighting its potential broader applications for river and flood forecasting.more » « less
-
This paper advances machine learning (ML)-based streamflow prediction by strategically selecting rainfall events, introducing a new loss function, and addressing rainfall forecast uncertainties. Focusing on the Iowa River Basin, we applied the stochastic storm transposition (SST) method to create realistic rainfall events, which were input into a hydrological model to generate corresponding streamflow data for training and testing deterministic and probabilistic ML models. Long short-term memory (LSTM) networks were employed to predict streamflow up to 12 h ahead. An active learning approach was used to identify the most informative rainfall events, reducing data generation effort. Additionally, we introduced a novel asymmetric peak loss function to improve peak streamflow prediction accuracy. Incorporating rainfall forecast uncertainties, our probabilistic LSTM model provided uncertainty quantification for streamflow predictions. Performance evaluation using different metrics improved the accuracy and reliability of our models. These contributions enhance flood forecasting and decision-making while significantly reducing computational time and costs.more » « less
-
Thenkabail, Prasad S. (Ed.)Physically based hydrologic models require significant effort and extensive information for development, calibration, and validation. The study explored the use of the random forest regression (RFR), a supervised machine learning (ML) model, as an alternative to the physically based Soil and Water Assessment Tool (SWAT) for predicting streamflow in the Rio Grande Headwaters near Del Norte, a snowmelt-dominated mountainous watershed of the Upper Rio Grande Basin. Remotely sensed data were used for the random forest machine learning analysis (RFML) and RStudio for data processing and synthesizing. The RFML model outperformed the SWAT model in accuracy and demonstrated its capability in predicting streamflow in this region. We implemented a customized approach to the RFR model to assess the model’s performance for three training periods, across 1991–2010, 1996–2010, and 2001–2010; the results indicated that the model’s accuracy improved with longer training periods, implying that the model trained on a more extended period is better able to capture the parameters’ variability and reproduce streamflow data more accurately. The variable importance (i.e., IncNodePurity) measure of the RFML model revealed that the snow depth and the minimum temperature were consistently the top two predictors across all training periods. The paper also evaluated how well the SWAT model performs in reproducing streamflow data of the watershed with a conventional approach. The SWAT model needed more time and data to set up and calibrate, delivering acceptable performance in annual mean streamflow simulation, with satisfactory index of agreement (d), coefficient of determination (R2), and percent bias (PBIAS) values, but monthly simulation warrants further exploration and model adjustments. The study recommends exploring snowmelt runoff hydrologic processes, dust-driven sublimation effects, and more detailed topographic input parameters to update the SWAT snowmelt routine for better monthly flow estimation. The results provide a critical analysis for enhancing streamflow prediction, which is valuable for further research and water resource management, including snowmelt-driven semi-arid regions.more » « less
-
Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change and where it is most sensitive remain key questions. Physically based hydrological models are often used for this purpose; however, they have embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land surface simulations across the mountainous western USA. We develop an observational technique for detecting streamflow responses to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20) across 31 western USA watersheds affected by snow, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2=0.85), suggesting that a 1 d earlier DOS20 corresponds with a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on average 11±4 d earlier per 1 ∘C of warming. However, DOS20 in colder watersheds (mean November–February air temperature, TNDJF<-8 ∘C) is on average 70 % more sensitive to climate change than in warmer watersheds (TNDJF>0 ∘C). Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain model parameters, improve hydrological predictions, and inform process understanding.more » « less
An official website of the United States government

