skip to main content


Title: Stimulated Emission with Evanescent Gain in the Total Internal Reflection Geometry
We demonstrated amplified spontaneous emission (ASE) enabled by evanescent gain at an interface between two adjacent dielectrics. The ASE wave is outcoupled to the high-index medium at the critical angle, enabling observation of spectacular emission rings.  more » « less
Award ID(s):
1856515
NSF-PAR ID:
10276491
Author(s) / Creator(s):
Date Published:
Journal Name:
CLEO Conference (virtual), May 9 – May 14, 2021, paper JW1A.128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cadmium chalcogenide nanoplatelets (NPLs) and their heterostructures have been reported to have low gain thresholds and large gain coefficients, showing great potential for lasing applications. However, the further improvement of the optical gain properties of NPLs is hindered by a lack of models that can account for their optical gain characteristics and predict their dependence on the properties (such as lateral size, concentration, and/or optical density). Herein, we report a systematic study of optical gain (OG) in 4-monolayer thick CdSe NPLs by both transient absorption spectroscopy study of colloidal solutions and amplified spontaneous emission (ASE) measurement of thin films. We showed that comparing samples with the same optical density at the excitation, the OG threshold is not dependent of the NPL lateral area, while the saturation gain amplitude is dependent on the NPL lateral area when comparing samples with the same optical density at the excitation wavelength. Both the OG and ASE thresholds increase with the optical density at the excitation wavelength for samples of the same NPL thickness and lateral area. We proposed an OG model for NPLs that can successfully account for the observed lateral area and optical density dependences. The model reveals that OG originates from stimulated emission from the bi-exciton states and the OG threshold is reached when the average number of excitons per NPL is about half the occupation of the band-edge exciton states. The model can also rationalize the much lower OG thresholds in the NPLs compared to QDs. This work provides a microscopic understanding of the dependence of the OG properties on the morphology of the colloidal nanocrystals and important guidance for the rational optimization of the lasing performance of NPLs and other 1- and 2-dimensional nanocrystals. 
    more » « less
  2. null (Ed.)
    Colloidal semiconductor nanocrystals (NCs) represent a promising class of nanomaterials for lasing applications. Currently, one of the key challenges facing the development of high-performance NC optical gain media lies in enhancing the lifetime of biexciton populations. This usually requires the employment of charge-delocalizing particle architectures, such as core/shell NCs, nanorods, and nanoplatelets. Here, we report on a two-dimensional nanoshell quantum dot (QD) morphology that enables a strong delocalization of photoinduced charges, leading to enhanced biexciton lifetimes and low lasing thresholds. A unique combination of a large exciton volume and a smoothed potential gradient across interfaces of the reported CdS bulk /CdSe/CdS shell (core/shell/shell) nanoshell QDs results in strong suppression of Auger processes, which was manifested in this work though the observation of stable amplified stimulated emission (ASE) at low pump fluences. An extensive charge delocalization in nanoshell QDs was confirmed by transient absorption measurements, showing that the presence of a bulk-size core in CdS bulk /CdSe/CdS shell QDs reduces exciton–exciton interactions. Overall, present findings demonstrate unique advantages of the nanoshell QD architecture as a promising optical gain medium in solid-state lighting and lasing applications. 
    more » « less
  3. Summary

    Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related toSIin the Solanaceae. For example, the pistilSIproteins S‐RNase andHTprotein function in a pistil‐sideIRBthat causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independentIRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection ofSolanum lycopersicumpollen bySCSolanum pennelliiLA0716,SC.Solanum habrochaitesLA0407, andSCSolanum arcanumLA2157, which lack functional S‐RNase expression. We found that all three accessions expressHTproteins, which previously had been known to function only in conjunction with S‐RNase, and then usedRNAi to test whether they also function in S‐RNase‐independent pollen rejection. SuppressingHTexpression inSCS. pennelliiLA0716 allowsS. lycopersicumpollen tubes to penetrate farther into the pistil inHTsuppressed plants, but not to reach the ovary. In contrast, suppressingHTexpression inSC.Solanum habrochaitesLA0407 and inSCS. arcanumLA2157 allowsS. lycopersicumpollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus,HTproteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.

     
    more » « less
  4. null (Ed.)
    The West Antarctic Ice Sheet (WAIS) is largely marine based and thus highly sensitive to both climatic and oceanographic changes. Therefore, the WAIS has likely had a very dynamic history over the last several million years. A complete collapse of the WAIS would result in a global sea level rise of 3.3–4.3 m, yet the world’s scientific community is not able to predict its future behavior. Moreover, knowledge about past behavior of the WAIS is poor, in particular during geological times with climatic conditions similar to those expected for the near and distant future. Reconstructions and quantifications of partial or complete WAIS collapses in the past are urgently needed for constraining and testing ice sheet models that aim to predict future WAIS behavior and the potential contribution of the WAIS to global sea level rise. Large uncertainties exist regarding the chronology, extent, rates, and spatial and temporal variability of past advances and retreats of the WAIS across the continental shelves. These uncertainties largely result from the fundamental lack of data from drill cores recovered proximal to the WAIS. The continental shelf and rise of the Amundsen Sea are prime targets for drilling because the records are expected to yield archives of pure WAIS dynamics unaffected by other ice sheets and the WAIS sector draining into the Amundsen Sea Embayment (ASE) currently experiences the largest ice loss in Antarctica (Paolo et al., 2015). We propose a series of drill sites for the ASE shelf where seismic data reveal seaward-dipping sedimentary sequences that span from the preglacial depositional phase to the most recent glacial periods. Our strategy is to drill a transect from the oldest sequences close to the bedrock/basin boundary at the middle–inner shelf transition to the youngest sequences on the outer shelf in the eastern ASE. If the eastern ASE is inaccessible due to sea ice cover, a similar transect of sites can be drilled on the western ASE. The core transect will provide a detailed history of the glacial cycles in the Amundsen Sea region and allow comparison to the glacial history from the Ross Sea sector. In addition, deep-water sites on the continental rise of the Amundsen Sea are selected for recovering continuous records of glacially transported sediments and detailed archives of climatic and oceanographic changes throughout glacial–interglacial cycles. We will apply a broad suite of analytical techniques, including multiproxy analyses, to address our objectives of reconstructing the onset of glaciation in the greenhouse to icehouse transition, processes of dynamic ice sheet behavior during the Neogene and Quaternary, and ocean conditions associated with the glacial cycles. The five principal objectives of Expedition 379 are as follows: 1. To reconstruct the glacial history of West Antarctica from the Paleogene to recent times and the dynamic behavior of the WAIS during the Neogene and Quaternary, especially possible partial or full WAIS collapses, and the WAIS contribution to past sea level changes. Emphasis is placed in particular on studying the response of the WAIS at times when the pCO2 in Earth’s atmosphere exceeded 400 ppm and atmospheric and oceanic temperatures were higher than at present. 2. To correlate the WAIS-proximal records of ice sheet dynamics in the Amundsen Sea with global records of ice volume changes and proxy records for air and seawater temperatures. 3. To study the relationship between incursions of warm Circumpolar Deep Water (CDW) onto the continental shelf of the Amundsen Sea Embayment and the stability of marine-based ice sheet margins under warm water conditions. 4. To reconstruct the processes of major WAIS advances onto the middle and outer shelf that are likely to have occurred since the middle Miocene and compare their timing and processes to those of other Antarctic continental shelves. 5. To identify the timing of the first ice sheet expansion onto the continental shelf of the ASE and its possible relationship to the uplift of Marie Byrd Land. 
    more » « less
  5. null (Ed.)
    At some point, all HER (Hydrogen Evolution Reaction) catalysts, important in sustainable H 2 O splitting technology, will encounter O 2 and O 2 -damage. The [NiFeSe]-H 2 ases and some of the [NiFeS]–H 2 ases, biocatalysts for reversible H 2 production from protons and electrons, are exemplars of oxygen tolerant HER catalysts in nature. In the hydrogenase active sites oxygen damage may be extensive (irreversible) as it is for the [FeFe]–H 2 ase or moderate (reversible) for the [NiFe]–H 2 ases. The affinity of oxygen for sulfur, in [NiFeS]–H 2 ase, and selenium, in [NiFeSe]–H 2 ase, yielding oxygenated chalcogens results in maintenance of the core NiFe unit, and myriad observable but inactive states, which can be reductively repaired. In contrast, the [FeFe]–H 2 ase active site has less possibilities for chalcogen-oxygen uptake and a greater chance for O 2 -attack on iron. Exposure to O 2 typically leads to irreversible damage. Despite the evidence of S/Se-oxygenation in the active sites of hydrogenases, there are limited reported synthetic models. This perspective will give an overview of the studies of O 2 reactions with the hydrogenases and biomimetics with focus on our recent studies that compare sulfur and selenium containing synthetic analogues of the [NiFe]–H 2 ase active sites. 
    more » « less