skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A versatile approach to the synthesis of mannosamine glycosides
O -Picoloyl protecting groups at remote positions can affect the stereoselectivity of glycosylation by means of the H-bond-mediated aglycone delivery (HAD) pathway. A new practical method for the stereoselective synthesis of β-glycosides of mannosamine is reported. The presence of the O -picoloyl group at the C-3 position of a mannosamine donor can provide high or complete stereocontrol. The method was also utilized for the synthesis of a biologically relevant trisaccharide related to the capsular polysaccharide of Streptococcus pneumoniae serotype 4. Also reported herein is a method to achieve complete α-manno stereoselectivity with mannosamine donors equipped with 3- O -benzoyl group.  more » « less
Award ID(s):
1800350
NSF-PAR ID:
10276709
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
Volume:
18
Issue:
34
ISSN:
1477-0520
Page Range / eLocation ID:
6682 to 6695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Reported herein is a new method for a highly effective synthesis of β-glycosides from mannuronic acid donors equipped with the 3- O -picoloyl group. The stereocontrol of glycosylations was achieved by means of the H-bond-mediated aglycone delivery (HAD). The method was utilized for the synthesis of a tetrasaccharide linked via β-(1 → 3)-mannuronic linkages. We have also investigated 3,6-lactonized glycosyl donors that provided moderate to high β-manno stereoselectivity in glycosylations. A method to achieve complete α-manno stereoselectivity with mannuronic acid donors equipped with 3- O -benzoyl group is also reported. 
    more » « less
  2. Abstract

    A concise and stereoselective total synthesis of the clinically relevant tricyclic prostaglandin D2metabolite (tricyclic‐PGDM) methyl ester in racemic form was accomplished in eight steps from a readily available known cyclopentene‐diol derivative. The synthesis features a nickel‐catalyzed Ueno–Stork‐type dicarbofunctionalization to generate two consecutive stereocenters, a palladium‐catalyzed carbonylative spirolactonization to build the core oxaspirolactone, and aZ‐selective cross‐metathesis to introduce the (Z)‐3‐butenoate side chain, a group challenging to introduce through traditional Wittig protocols and troublesome for the two previous total syntheses. A generalZ‐selective cross‐metathesis protocol to construct (Z)‐β,γ‐unsaturated esters was also developed that has broad functional group tolerance and high stereoselectivity. Additionally, our synthesis already accumulated 75 mg of valuable material for an18O‐tricyclic‐PGDM‐based assay used in clinical settings for inflammation.

     
    more » « less
  3. Abstract

    A concise and stereoselective total synthesis of the clinically relevant tricyclic prostaglandin D2metabolite (tricyclic‐PGDM) methyl ester in racemic form was accomplished in eight steps from a readily available known cyclopentene‐diol derivative. The synthesis features a nickel‐catalyzed Ueno–Stork‐type dicarbofunctionalization to generate two consecutive stereocenters, a palladium‐catalyzed carbonylative spirolactonization to build the core oxaspirolactone, and aZ‐selective cross‐metathesis to introduce the (Z)‐3‐butenoate side chain, a group challenging to introduce through traditional Wittig protocols and troublesome for the two previous total syntheses. A generalZ‐selective cross‐metathesis protocol to construct (Z)‐β,γ‐unsaturated esters was also developed that has broad functional group tolerance and high stereoselectivity. Additionally, our synthesis already accumulated 75 mg of valuable material for an18O‐tricyclic‐PGDM‐based assay used in clinical settings for inflammation.

     
    more » « less
  4. We introduce a general method for achieving robust group-invariance in group-equivariant convolutional neural networks (G-CNNs), which we call the G-triple-correlation (G-TC) layer. The approach leverages the theory of the triple-correlation on groups, which is the unique, lowest-degree polynomial invariant map that is also complete. Many commonly used invariant maps--such as the max--are incomplete: they remove both group and signal structure. A complete invariant, by contrast, removes only the variation due to the actions of the group, while preserving all information about the structure of the signal. The completeness of the triple correlation endows the G-TC layer with strong robustness, which can be observed in its resistance to invariance-based adversarial attacks. In addition, we observe that it yields measurable improvements in classification accuracy over standard Max G-Pooling in G-CNN architectures. We provide a general and efficient implementation of the method for any discretized group, which requires only a table defining the group's product structure. We demonstrate the benefits of this method for G-CNNs defined on both commutative and non-commutative groups--SO(2), O(2), SO(3), and O(3) (discretized as the cyclic C8, dihedral D16, chiral octahedral O and full octahedral Oh groups)--acting on ℝ2 and ℝ3 on both G-MNIST and G-ModelNet10 datasets. 
    more » « less
  5. Abstract

    A Diels–Alder reaction‐based strategy for the synthesis of indoles and related heterocycles is reported. An intramolecular cycloaddition of alkyne‐tethered 3‐aminopyrones gives 4‐substituted indolines in good yield and with complete regioselectivity. Additional substitution is readily tolerated in the transformation, allowing synthesis of complex and non‐canonical substitution patterns. Oxidative conditions give the corresponding indoles. The strategy also allows the synthesis of carbazoles. The method was showcased in a formal synthesis of lysergic acid.

     
    more » « less