skip to main content


Title: Toward a productive definition of technology in science and STEM education.
https://citejournal.org/volume-20/issue-3-20/science/toward-a-productive-definition-of-technology-in-science-and-stem-education/  more » « less
Award ID(s):
1813342
NSF-PAR ID:
10276809
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Contemporary issues in technology and teacher education
Volume:
20
Issue:
3
ISSN:
1528-5804
Page Range / eLocation ID:
472-496
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Expert testimony varies in scientific quality and jurors have a difficult time evaluating evidence quality (McAuliff et al., 2009). In the current study, we apply Fuzzy Trace Theory principles, examining whether visual and gist aids help jurors calibrate to the strength of scientific evidence. Additionally we were interested in the role of jurors’ individual differences in scientific reasoning skills in their understanding of case evidence. Contrary to our preregistered hypotheses, there was no effect of evidence condition or gist aid on evidence understanding. However, individual differences between jurors’ numeracy skills predicted evidence understanding. Summary Poor-quality expert evidence is sometimes admitted into court (Smithburn, 2004). Jurors’ calibration to evidence strength varies widely and is not robustly understood. For instance, previous research has established jurors lack understanding of the role of control groups, confounds, and sample sizes in scientific research (McAuliff, Kovera, & Nunez, 2009; Mill, Gray, & Mandel, 1994). Still others have found that jurors can distinguish weak from strong evidence when the evidence is presented alone, yet not when simultaneously presented with case details (Smith, Bull, & Holliday, 2011). This research highlights the need to present evidence to jurors in a way they can understand. Fuzzy Trace Theory purports that people encode information in exact, verbatim representations and through “gist” representations, which represent summary of meaning (Reyna & Brainerd, 1995). It is possible that the presenting complex scientific evidence to people with verbatim content or appealing to the gist, or bottom-line meaning of the information may influence juror understanding of that evidence. Application of Fuzzy Trace Theory in the medical field has shown that gist representations are beneficial for helping laypeople better understand risk and benefits of medical treatment (Brust-Renck, Reyna, Wilhelms, & Lazar, 2016). Yet, little research has applied Fuzzy Trace Theory to information comprehension and application within the context of a jury (c.f. Reyna et. al., 2015). Additionally, it is likely that jurors’ individual characteristics, such as scientific reasoning abilities and cognitive tendencies, influence their ability to understand and apply complex scientific information (Coutinho, 2006). Methods The purpose of this study was to examine how jurors calibrate to the strength of scientific information, and whether individual difference variables and gist aids inspired by Fuzzy Trace Theory help jurors better understand complicated science of differing quality. We used a 2 (quality of scientific evidence: high vs. low) x 2 (decision aid to improve calibration - gist information vs. no gist information), between-subjects design. All hypotheses were preregistered on the Open Science Framework. Jury-eligible community participants (430 jurors across 90 juries; Mage = 37.58, SD = 16.17, 58% female, 56.93% White). Each jury was randomly assigned to one of the four possible conditions. Participants were asked to individually fill out measures related to their scientific reasoning skills prior to watching a mock jury trial. The trial was about an armed bank robbery and consisted of various pieces of testimony and evidence (e.g. an eyewitness testimony, police lineup identification, and a sweatshirt found with the stolen bank money). The key piece of evidence was mitochondrial DNA (mtDNA) evidence collected from hair on a sweatshirt (materials from Hans et al., 2011). Two experts presented opposing opinions about the scientific evidence related to the mtDNA match estimate for the defendant’s identification. The quality and content of this mtDNA evidence differed based on the two conditions. The high quality evidence condition used a larger database than the low quality evidence to compare to the mtDNA sample and could exclude a larger percentage of people. In the decision aid condition, experts in the gist information group presented gist aid inspired visuals and examples to help explain the proportion of people that could not be excluded as a match. Those in the no gist information group were not given any aid to help them understand the mtDNA evidence presented. After viewing the trial, participants filled out a questionnaire on how well they understood the mtDNA evidence and their overall judgments of the case (e.g. verdict, witness credibility, scientific evidence strength). They filled this questionnaire out again after a 45-minute deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. We developed a 20-item multiple-choice comprehension test for the mtDNA scientific information in the cases (modeled on Hans et al., 2011, and McAuliff et al., 2009). Participants were shown 20 statements related to DNA evidence and asked whether these statements were True or False. The test was then scored out of 20 points. Results For this project, we measured calibration to the scientific evidence in a few different ways. We are building a full model with these various operationalizations to be presented at APLS, but focus only on one of the calibration DVs (i.e., objective understanding of the mtDNA evidence) in the current proposal. We conducted a general linear model with total score on the mtDNA understanding measure as the DV and quality of scientific evidence condition, decision aid condition, and the four individual difference measures (i.e., NFC, ATS, WNS, and SRS) as predictors. Contrary to our main hypotheses, neither evidence quality nor decision aid condition affected juror understanding. However, the individual difference variables did: we found significant main effects for Scientific Reasoning Skills, F(1, 427) = 16.03, p <.001, np2 = .04, Weller Numeracy Scale, F(1, 427) = 15.19, p <.001, np2 = .03, and Need for Cognition, F(1, 427) = 16.80, p <.001, np2 = .04, such that those who scored higher on these measures displayed better understanding of the scientific evidence. In addition there was a significant interaction of evidence quality condition and scores on the Weller’s Numeracy Scale, F(1, 427) = 4.10, p = .04, np2 = .01. Further results will be discussed. Discussion These data suggest jurors are not sensitive to differences in the quality of scientific mtDNA evidence, and also that our attempt at helping sensitize them with Fuzzy Trace Theory-inspired aids did not improve calibration. Individual scientific reasoning abilities and general cognition styles were better predictors of understanding this scientific information. These results suggest a need for further exploration of approaches to help jurors differentiate between high and low quality evidence. Note: The 3rd author was supported by an AP-LS AP Award for her role in this research. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills help jurors understand complex scientific evidence. 
    more » « less
  2. PLEASE CONTACT AUTHORS IF YOU CONTRIBUTE AND WOULD LIKE TO BE LISTED AS A CO-AUTHOR. (this message will be removed some time weeks/months after the first publication)

    Terrestrial Parasite Tracker indexed biotic interactions and review summary.

    The Terrestrial Parasite Tracker (TPT) project began in 2019 and is funded by the National Science foundation to mobilize data from vector and ectoparasite collections to data aggregators (e.g., iDigBio, GBIF) to help build a comprehensive picture of arthropod host-association evolution, distributions, and the ecological interactions of disease vectors which will assist scientists, educators, land managers, and policy makers. Arthropod parasites often are important to human and wildlife health and safety as vectors of pathogens, and it is critical to digitize these specimens so that they, and their biotic interaction data, will be available to help understand and predict the spread of human and wildlife disease.

    This data publication contains versioned TPT associated datasets and related data products that were tracked, reviewed and indexed by Global Biotic Interactions (GloBI) and associated tools. GloBI provides open access to finding species interaction data (e.g., predator-prey, pollinator-plant, pathogen-host, parasite-host) by combining existing open datasets using open source software.

    If you have questions or comments about this publication, please open an issue at https://github.com/ParasiteTracker/tpt-reporting or contact the authors by email.

    Funding:
    The creation of this archive was made possible by the National Science Foundation award "Collaborative Research: Digitization TCN: Digitizing collections to trace parasite-host associations and predict the spread of vector-borne disease," Award numbers DBI:1901932 and DBI:1901926

    References:
    Jorrit H. Poelen, James D. Simons and Chris J. Mungall. (2014). Global Biotic Interactions: An open infrastructure to share and analyze species-interaction datasets. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2014.08.005.

    GloBI Data Review Report

    Datasets under review:
     - University of Michigan Museum of Zoology Insect Division. Full Database Export 2020-11-20 provided by Erika Tucker and Barry Oconner. accessed via https://github.com/EMTuckerLabUMMZ/ummzi/archive/6731357a377e9c2748fc931faa2ff3dc0ce3ea7a.zip on 2022-06-24T14:02:48.801Z
     - Academy of Natural Sciences Entomology Collection for the Parasite Tracker Project accessed via https://github.com/globalbioticinteractions/ansp-para/archive/5e6592ad09ec89ba7958266ad71ec9d5d21d1a44.zip on 2022-06-24T14:04:22.091Z
     - Bernice Pauahi Bishop Museum, J. Linsley Gressitt Center for Research in Entomology accessed via https://github.com/globalbioticinteractions/bpbm-ent/archive/c085398dddd36f8a1169b9cf57de2a572229341b.zip on 2022-06-24T14:04:37.692Z
     - Texas A&M University, Biodiversity Teaching and Research Collections accessed via https://github.com/globalbioticinteractions/brtc-para/archive/f0a718145b05ed484c4d88947ff712d5f6395446.zip on 2022-06-24T14:06:40.154Z
     - Brigham Young University Arthropod Museum accessed via https://github.com/globalbioticinteractions/byu-byuc/archive/4a609ac6a9a03425e2720b6cdebca6438488f029.zip on 2022-06-24T14:06:51.420Z
     - California Academy of Sciences Entomology accessed via https://github.com/globalbioticinteractions/cas-ent/archive/562aea232ec74ab615f771239451e57b057dc7c0.zip on 2022-06-24T14:07:16.371Z
     - Clemson University Arthropod Collection accessed via https://github.com/globalbioticinteractions/cu-cuac/archive/6cdcbbaa4f7cec8e1eac705be3a999bc5259e00f.zip on 2022-06-24T14:07:40.925Z
     - Denver Museum of Nature and Science (DMNS) Parasite specimens (DMNS:Para) accessed via https://github.com/globalbioticinteractions/dmns-para/archive/a037beb816226eb8196533489ee5f98a6dfda452.zip on 2022-06-24T14:08:00.730Z
     - Field Museum of Natural History IPT accessed via https://github.com/globalbioticinteractions/fmnh/archive/6bfc1b7e46140e93f5561c4e837826204adb3c2f.zip on 2022-06-24T14:18:51.995Z
     - Illinois Natural History Survey Insect Collection accessed via https://github.com/globalbioticinteractions/inhs-insects/archive/38692496f590577074c7cecf8ea37f85d0594ae1.zip on 2022-06-24T14:19:37.563Z
     - UMSP / University of Minnesota / University of Minnesota Insect Collection accessed via https://github.com/globalbioticinteractions/min-umsp/archive/3f1b9d32f947dcb80b9aaab50523e097f0e8776e.zip on 2022-06-24T14:20:27.232Z
     - Milwaukee Public Museum Biological Collections Data Portal accessed via https://github.com/globalbioticinteractions/mpm/archive/9f44e99c49ec5aba3f8592cfced07c38d3223dcd.zip on 2022-06-24T14:20:46.185Z
     - Museum for Southern Biology (MSB) Parasite Collection accessed via https://github.com/globalbioticinteractions/msb-para/archive/178a0b7aa0a8e14b3fe953e770703fe331eadacc.zip on 2022-06-24T15:16:07.223Z
     - The Albert J. Cook Arthropod Research Collection accessed via https://github.com/globalbioticinteractions/msu-msuc/archive/38960906380443bd8108c9e44aeff4590d8d0b50.zip on 2022-06-24T16:09:40.702Z
     - Ohio State University Acarology Laboratory accessed via https://github.com/globalbioticinteractions/osal-ar/archive/876269d66a6a94175dbb6b9a604897f8032b93dd.zip on 2022-06-24T16:10:00.281Z
     - Frost Entomological Museum, Pennsylvania State University accessed via https://github.com/globalbioticinteractions/psuc-ento/archive/30b1f96619a6e9f10da18b42fb93ff22cc4f72e2.zip on 2022-06-24T16:10:07.741Z
     - Purdue Entomological Research Collection accessed via https://github.com/globalbioticinteractions/pu-perc/archive/e0909a7ca0a8df5effccb288ba64b28141e388ba.zip on 2022-06-24T16:10:26.654Z
     - Texas A&M University Insect Collection accessed via https://github.com/globalbioticinteractions/tamuic-ent/archive/f261a8c192021408da67c39626a4aac56e3bac41.zip on 2022-06-24T16:10:58.496Z
     - University of California Santa Barbara Invertebrate Zoology Collection accessed via https://github.com/globalbioticinteractions/ucsb-izc/archive/825678ad02df93f6d4469f9d8b7cc30151b9aa45.zip on 2022-06-24T16:12:29.854Z
     - University of Hawaii Insect Museum accessed via https://github.com/globalbioticinteractions/uhim/archive/53fa790309e48f25685e41ded78ce6a51bafde76.zip on 2022-06-24T16:12:41.408Z
     - University of New Hampshire Collection of Insects and other Arthropods UNHC-UNHC accessed via https://github.com/globalbioticinteractions/unhc/archive/f72575a72edda8a4e6126de79b4681b25593d434.zip on 2022-06-24T16:12:59.500Z
     - Scott L. Gardner and Gabor R. Racz (2021). University of Nebraska State Museum - Parasitology. Harold W. Manter Laboratory of Parasitology. University of Nebraska State Museum. accessed via https://github.com/globalbioticinteractions/unl-nsm/archive/6bcd8aec22e4309b7f4e8be1afe8191d391e73c6.zip on 2022-06-24T16:13:06.914Z
     - Data were obtained from specimens belonging to the United States National Museum of Natural History (USNM), Smithsonian Institution, Washington DC and digitized by the Walter Reed Biosystematics Unit (WRBU). accessed via https://github.com/globalbioticinteractions/usnmentflea/archive/ce5cb1ed2bbc13ee10062b6f75a158fd465ce9bb.zip on 2022-06-24T16:13:38.013Z
     - US National Museum of Natural History Ixodes Records accessed via https://github.com/globalbioticinteractions/usnm-ixodes/archive/c5fcd5f34ce412002783544afb628a33db7f47a6.zip on 2022-06-24T16:13:45.666Z
     - Price Institute of Parasite Research, School of Biological Sciences, University of Utah accessed via https://github.com/globalbioticinteractions/utah-piper/archive/43da8db550b5776c1e3d17803831c696fe9b8285.zip on 2022-06-24T16:13:54.724Z
     - University of Wisconsin Stevens Point, Stephen J. Taft Parasitological Collection accessed via https://github.com/globalbioticinteractions/uwsp-para/archive/f9d0d52cd671731c7f002325e84187979bca4a5b.zip on 2022-06-24T16:14:04.745Z
     - Giraldo-Calderón, G. I., Emrich, S. J., MacCallum, R. M., Maslen, G., Dialynas, E., Topalis, P., … Lawson, D. (2015). VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic acids research, 43(Database issue), D707–D713. doi:10.1093/nar/gku1117. accessed via https://github.com/globalbioticinteractions/vectorbase/archive/00d6285cd4e9f4edd18cb2778624ab31b34b23b8.zip on 2022-06-24T16:14:11.965Z
     - WIRC / University of Wisconsin Madison WIS-IH / Wisconsin Insect Research Collection accessed via https://github.com/globalbioticinteractions/wis-ih-wirc/archive/34162b86c0ade4b493471543231ae017cc84816e.zip on 2022-06-24T16:14:29.743Z
     - Yale University Peabody Museum Collections Data Portal accessed via https://github.com/globalbioticinteractions/yale-peabody/archive/43be869f17749d71d26fc820c8bd931d6149fe8e.zip on 2022-06-24T16:23:29.289Z

    Generated on:
    2022-06-24

    by:
    GloBI's Elton 0.12.4 
    (see https://github.com/globalbioticinteractions/elton).

    Note that all files ending with .tsv are files formatted 
    as UTF8 encoded tab-separated values files.

    https://www.iana.org/assignments/media-types/text/tab-separated-values


    Included in this review archive are:

    README:
      This file.

    review_summary.tsv:
      Summary across all reviewed collections of total number of distinct review comments.

    review_summary_by_collection.tsv:
      Summary by reviewed collection of total number of distinct review comments.

    indexed_interactions_by_collection.tsv: 
      Summary of number of indexed interaction records by institutionCode and collectionCode.

    review_comments.tsv.gz:
      All review comments by collection.

    indexed_interactions_full.tsv.gz:
      All indexed interactions for all reviewed collections.

    indexed_interactions_simple.tsv.gz:
      All indexed interactions for all reviewed collections selecting only sourceInstitutionCode, sourceCollectionCode, sourceCatalogNumber, sourceTaxonName, interactionTypeName and targetTaxonName.

    datasets_under_review.tsv:
      Details on the datasets under review.

    elton.jar: 
      Program used to update datasets and generate the review reports and associated indexed interactions.

    datasets.zip:
      Source datasets used by elton.jar in process of executing the generate_report.sh script.

    generate_report.sh:
      Program used to generate the report

    generate_report.log:
      Log file generated as part of running the generate_report.sh script
     

     
    more » « less
  3. Abstract Aim

    Island biotas face an array of unique challenges under global change. Monitoring and research efforts, however, have been hindered by the large number of islands, their broad distribution and geographical isolation. Global citizen‐science initiatives have the potential to address these deficiencies. Here, we determine how the eBird citizen‐science programme is currently sampling island bird assemblages annually and how these patterns are developing over time.

    Location

    Global.

    Taxa

    Birds.

    Methods

    We compiled occurrence information of non‐marine bird species across the world's islands (n = 21,813) over an 18‐year period (2002–2019) from eBird. We estimated annual survey completeness and species richness across islands, which we examined in relation to six geographical and four climatic features.

    Results

    eBird contained bird occurrence information forca. 20% of the world's islands (n = 4,205) withca. 8% classified as well surveyed annually (n = 1,644). eBird participants tended to survey larger islands that were more distant from the mainland. These islands had lower proximity to other islands and contained a broader range of elevations. Temperature, precipitation and temperature seasonality were at intermediate levels. Precipitation seasonality was at low and intermediate levels. Islands located between 10 and 60° N latitude and 20 and 40° S latitude were overrepresented, and islands located in Southeast Asia were underrepresented. From 2002 to 2019, the number of islands surveyed annually increased byca. 96.4 islands/year. During this period, island size decreased, distance from mainland did not change, proximity to other islands increased and elevation range decreased.

    Main conclusions

    The eBird programme tends to survey larger islands containing intermediate climates that are more isolated from the mainland and other islands. These findings provide a framework to support the informed application of the eBird database in avian island biogeography. Our findings emphasize citizen science as an empirical resource to support long‐term ecological research, conservation and monitoring efforts across remote regions of the globe.

     
    more » « less
  4. Abstract Background

    The language of the science curriculum is complex, even in the early grades. To communicate their scientific observations, children must produce complex syntax, particularly complement clauses (e.g.,I think it will float;We noticed that it vibrates). Complex syntax is often challenging for children with developmental language disorder (DLD), and thus their learning and communication of science may be compromised.

    Aims

    We asked whether recast therapy delivered in the context of a science curriculum led to gains in complement clause use and scientific content knowledge. To understand the efficacy of recast therapy, we compared changes in science and language knowledge in children who received treatment for complement clauses embedded in a first‐grade science curriculum to two active control conditions (vocabulary + science, phonological awareness + science).

    Methods & Procedures

    This 2‐year single‐site three‐arm parallel randomized controlled trial was conducted in Delaware, USA. Children with DLD, not yet in first grade and with low accuracy on complement clauses, were eligible. Thirty‐three 4–7‐year‐old children participated in the summers of 2018 and 2019 (2020 was cancelled due to COVID‐19). We assigned participants to arms using 1:1:1 pseudo‐random allocation (avoiding placing siblings together). The intervention consisted of 39 small‐group sessions of recast therapy, robust vocabulary instruction or phonological awareness intervention during eight science units over 4 weeks, followed by two science units (1 week) taught without language intervention. Pre‐/post‐measures were collected 3 weeks before and after camp by unmasked assessors.

    Outcomes & Results

    Primary outcome measures were accuracy on a 20‐item probe of complement clause production and performance on ten 10‐item unit tests (eight science + language, two science only). Complete data were available for 31 children (10 grammar, 21 active control); two others were lost to follow‐up. Both groups made similar gains on science unit tests for science + language content (pre versus post,d= 2.9,p< 0.0001; group,p= 0.24). The grammar group performed significantly better at post‐test than the active control group (d= 2.5,p= 0.049) on complement clause probes and marginally better on science‐only unit tests (d= 2.5,p= 0.051).

    Conclusions & Implications

    Children with DLD can benefit from language intervention embedded in curricular content and learn both language and science targets taught simultaneously. Tentative findings suggest that treatment for grammar targets may improve academic outcomes.

    What this paper addsWhat is already known on the subject

    We know that recast therapy focused on morphology is effective but very time consuming. Treatment for complex syntax in young children has preliminary efficacy data available. Prior research provides mixed evidence as to children’s ability to learn language targets in conjunction with other information.

    What this study adds

    This study provides additional data supporting the efficacy of intensive complex syntax recast therapy for children ages 4–7 with Developmental Language Disorder. It also provides data that children can learn language targets and science curricular content simultaneously.

    What are the clinical implications of this work?

    As SLPs, we have to talk about something to deliver language therapy; we should consider talking about curricular content. Recast therapy focused on syntactic frames is effective with young children.

     
    more » « less
  5. Abstract The Van Allen Probes Electric Fields and Waves (EFW) instrument provided measurements of electric fields and spacecraft floating potentials over a wide dynamic range from DC to 6.5 kHz near the equatorial plane of the inner magnetosphere between 600 km altitude and 5.8 Re geocentric distance from October 2012 to November 2019. The two identical instruments provided data to investigate the quasi-static and low frequency fields that drive large-scale convection, waves induced by interplanetary shock impacts that result in rapid relativistic particle energization, ultra-low frequency (ULF) MHD waves which can drive radial diffusion, and higher frequency wave fields and time domain structures that provide particle pitch angle scattering and energization. In addition, measurements of the spacecraft potential provided a density estimate in cold plasmas ( $<20~\text{eV}$ < 20 eV ) from 10 to $3000~\text{cm}^{-3}$ 3000 cm − 3 . The EFW instrument provided analog electric field signals to EMFISIS for wave analysis, and it received 3d analog signals from the EMFISIS search coil sensors for inclusion in high time resolution waveform data. The electric fields and potentials were measured by current-biased spherical sensors deployed at the end of four 50 m booms in the spacecraft spin plane (spin period $\sim11~\text{sec}$ ∼ 11 sec ) and a pair of stacer booms with a total tip-tip separation of 15 m along the spin axis. Survey waveform measurements at 16 and/or 32 S/sec (with a nominal uncertainty of 0.3 mV/m over the prime mission) were available continuously while burst waveform captures at up to 16,384 S/sec provided high frequency waveforms. This post-mission paper provides the reader with information useful for accessing, understanding and using EFW data. Selected science results are discussed and used to highlight instrument capabilities. Science quantities, data quality and error sources, and analysis routines are documented. 
    more » « less